
Randomized Approximation Algorithms:
Facility Location, Phylogenetic Networks, Nash Equilibria

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 13 oktober 2008 om 16.00 uur

door

Jaros law Byrka

geboren te Wroc law, Polen

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. K.I. Aardal
en
prof.dr. M.T. de Berg

A catalog record is available from the Eindhoven University of Technology Library

ISBN: 978-90-386-1416-8

Promotor: prof.dr. K.I. Aardal (Delft University of Technology)

2nd Promotor: prof.dr. M.T. de Berg (Eindhoven University of Technology)

Kerncommissie:

prof.dr. D.B. Shmoys (Cornell University, Ithaca, NY, USA)

dr. K. Lorys (Wroclaw University, Poland)

prof.dr. G.J. Woeginger (Eindhoven University of Technology)

The research reported in this thesis has been carried out at the Centrum voor
Wiskunde en Informatica, and at the Eindhoven University of Technology. The
first three years of the research were supported by the EU Marie Curie Research
Training Network ADONET, Contract No MRTN-CT-2003-504438.

Copyright c© 2008 by Jaroslaw Byrka

Printing: Eindhoven University Press

Acknowledgements

In the last four years, I have enjoyed the opportunity to work with outstanding
researchers both in Centrum voor Wiskunde en Informatica (CWI) in Amsterdam,
and in the Technische Universiteit Eindhoven (TU/e).

I thank Karen Aardal for giving me the opportunity to work with her and for
her great supervision. I am especially grateful for her trust in me as a researcher.
She was probably the only person who believed, that our interest in the Facility
Location problem will eventually be fruitful. I also appreciate her comments to
the manuscripts that I worked on, as well as her advice on the publication process
in general. Finally, her support and understanding of my personal situation was
invaluable. It was particularly important for me when my son Filip was born. I also
thank Mark de Berg for being my second supervisor.

I am grateful to a number of people who invited me to their areas of re-
search. Namely, to Karen Aardal (facility location), Steven Kelk (computational
biology), Vangelis Markakis (algorithmic game theory), Marcin Bienkowski (online
algorithms), Alexander Wolff (graph drawing). I truly enjoyed this diversity of top-
ics, which I would probably never approach if not my great colleagues. I also thank
each of my co-authors, for the precious experience of our collaboration.

It is barely impossible to mention all the people with whom I discussed the
scientific content of my thesis. Nonetheless, I recognize my colleagues from both
CWI and TU/e, and the referees of my papers. I especially enjoyed the discussions
with my wife Kasia, who as a psychologist often had a different view on the meaning
and the importance of various aspects of the work I was involved in.

A number of people made an effort to help me with the preparation of the
manuscript of this thesis. In particular, I am grateful to Karen who was assisting
me throughout the entire writing process. She had to fight with my notorious
spelling mistakes (like writing “guaranty” instead of “guarantee”). I thank Kasia
for reading most of the text and also Maciek for helping me with the introduction.

Apart from research, I spent hours discussing less relevant issues with, among
the others, my roommates at CWI, Nebojsa Gvozdenovic and Hartwig Bosse, and
Alexander Wolff and Maciek Modelski at TU/e.

Finally, I would like to thank the people who made it possible for me to spend
the last four years working in the places I did. I am grateful for the opportunity to
be a member of the PNA1 group at CWI. The first three years of my PhD research
were possible due to the generous support of the EU project ADONET Contract

v

vi

No MRTN-CT-2003-504438. I thank Marc de Berg and the other members of the
algorithmic group at TU/e for hosting me during the last year of my PhD study.
I also thank Leen Stougie for inviting me to join the EU project ARRIVAL and
offering a postdoc position which I currently hold.

Jaros law Byrka

Contents

1 Preliminaries 1
1.1 Problems, algorithms and computation complexity 1

1.1.1 P vs. NP . 4
1.1.2 IP and LP . 6

1.2 Approximation algorithms . 8
1.3 Randomized algorithms . 10
1.4 Results in this thesis . 11

2 Facility location 13
2.1 On facility location problems . 13

2.1.1 Problem definition . 14
2.1.2 Variants and related problems 15
2.1.3 Algorithms for UFL . 17
2.1.4 Our contribution to facility location approximation algorithms. 22

2.2 The algorithm of Mahdian et al. is not optimal 22
2.2.1 The algorithm . 23
2.2.2 Analysis: lower bound . 24

2.3 A new greedy rounding algorithm . 28
2.3.1 Outline . 28
2.3.2 Preliminaries . 30
2.3.3 Sparsening the graph of the fractional solution 31
2.3.4 Our new algorithm . 37
2.3.5 The 1.5-approximation algorithm 40
2.3.6 Multilevel facility location . 41
2.3.7 Universal randomized clustering procedure 43
2.3.8 Concluding remarks . 44

3 Phylogenetic trees/networks 45
3.1 Preliminaries . 45
3.2 Constructing networks consistent with big fraction of triplets 48

3.2.1 Definitions . 48
3.2.2 Labeling a network topology 49
3.2.3 An optimized derandomization procedure 50

vii

viii CONTENTS

3.2.4 Consequences . 55
3.2.5 Application to level-1 phylogenetic networks 56
3.2.6 A lower bound for level-2 networks 58
3.2.7 Conclusions and open questions 59

3.3 An attempt to break the 1/3 barrier for trees 61
3.3.1 A bottom-up 1/3-approximation algorithm for MAX-LEVEL-0 62
3.3.2 Reduction from MAX SUBDAG 64
3.3.3 MIN CATERPILLAR reduced to FEEDBACK ARC SET . . 65
3.3.4 Maximization reduced to minimization 66
3.3.5 Additional remarks . 66

3.4 Comparing two trees . 67
3.4.1 Introduction . 67
3.4.2 Complexity . 70
3.4.3 Approximation . 76
3.4.4 Fixed-Parameter Tractability 81
3.4.5 Experiments . 83

4 Nash equilibria 87
4.1 Introduction . 87
4.2 Notation and Definitions . 89
4.3 A (3−

√
5

2)-approximation . 91
4.4 An Improved Approximation . 93
4.5 Proof of Lemma 4.4.2 and Lemma 4.4.4 98
4.6 Games with more than 2 players . 101
4.7 Discussion . 102

5 Set Multicover 103
5.1 Preliminaries . 103
5.2 The covering problems . 104
5.3 Bucket Game . 104
5.4 Simple constant factor approximation 106
5.5 Improvements by parameter adjustments 108

Bibliography 111

Summary 123

Curriculum Vitae 125

Chapter 1

Preliminaries

Despite a great effort, researchers are unable to find efficient algorithms for a num-
ber of natural computational problems. Typically, it is possible to emphasize the
hardness of such problems by proving that they are at least as hard as a number
of other problems. In the language of computational complexity it means proving
that the problem is complete for a certain class of problems.

For optimization problems, we may consider to relax the requirement of the
outcome to be optimal and accept an approximate (i.e., close to optimal) solution.
For many of the problems that are hard to solve optimally, it is actually possible
to efficiently find close to optimal solutions. In this thesis, we study algorithms for
computing such approximate solutions.

1.1 Problems, algorithms and computation complexity

The field of computational complexity concerns itself with determining in a com-
parative way the computational difficulty of problems. The difficulty/complexity of
a problem is related to the existence of a good solution method, an algorithm. Let
us first briefly discuss some types of computational problems and algorithms.

Decision problems. These problems are probably the most studied in theoretical
computer science. A decision problem is defined by two sets, the set of instances I
and a subset Y ⊂ I of, so called, “yes” instances. The problem is: Given an instance
i ∈ I, decide whether or not i ∈ Y . As an example of a decision problem, consider
the following problem PRIME. In this problem the instance set is the set of positive
integers and the set of “yes” instances is the set of prime numbers.

We will mainly be interested in discrete problems, which have countably many
instances. Moreover, as we will ignore constant factors in the running times of the
algorithms, the problems with finite number of instances are of minor interest to us.
To give general statements about classes of problems, we need to assume a certain
encoding of instances. A standard assumption is that instances are given as binary
strings, and that the size of an instance is the length of such a string. (Equivalently,

1

2 Preliminaries

we could say, that instances are positive integers and the size of an instance is the
logarithm of the number representing the instance). The set of “Yes” instances of
a decision problem is often called a language, as it is just a set of words over the
binary alphabet, and the problem is then called a membership problem of a word
in the language.

Algorithms for decision problems. To provide a simple method of testing
whether an instance is a “yes” instance for a particular problem, a formal definition
of an algorithm is not necessary. Often it suffices to think about algorithms as of
instructions, descriptions of methods designed to solve specific problems. However,
to give a proof that certain problems do not have algorithms, or do not have al-
gorithms with certain properties, it is essential to formally define the concept of
algorithms.

The first important model of an algorithm was proposed by Turing [Tur37], who
developed his famous Turing Machine (TM). A TM reads the input data, performs
a number of simple operations, possibly prints some output, and may decide to stop
at some point. Once a machine stops, we may interpret its output as an answer to
the computational question we consider. Particularly useful are the machines that
are guaranteed to stop no later than after a certain number of operations, expressed
as a function of the input size. Such a TM corresponds to a computational problem
it solves, and the number of operations it uses is called its running time.

Turing used his machines to prove the existence of, so called, undecidable prob-
lems, i.e., problems for which no TM solving the problem exists. In algorithmic
computer science we are typically interested in the question whether there exists
a TM/algorithm that solves a particular problem, and moreover, among the algo-
rithms solving the problem, we search for an algorithm with a short running time.

For a better control of the running time of an algorithm, instead of TMs, a differ-
ent computational model may be used. A Random Access Machine (RAM) [RAM]
model allows for simple arithmetic operations to be performed in a single unit of
time. For a TM to perform any operation on a number x it has to at least read
x, which occupies a space in memory that is at least logarithmic in the value of x,
whereas in the RAM model it is assumed that the operation time does not depend
on the size of the involved numbers. One could argue that the TM model is more
realistic, but the difference is not significant in case of the algorithms studied in this
thesis. We will mainly distinguish between polynomial and nonpolynomial time al-
gorithms, and it is well known that polynomial time algorithms in one model may
easily be turned into polynomial time algorithms in the other model. In this thesis,
whenever a more precise running time of an algorithm is provided, it is the running
time in the RAM model.

Optimization problems. Whereas for computational complexity the decision
problems are easier to handle, for modeling real life problems the language of op-
timization problems is often a more natural choice. In an optimization problem,
we are given a description of what makes a solution feasible for a given instance of

1.1 Problems, algorithms and computation complexity 3

the problem. Within the set of the feasible solutions, we are supposed to find one
which maximizes/minimizes a given objective function. The set of feasible solutions
is typically described in terms of a list of constraints. A solution is feasible if it
satisfies all of these constraints, and we say that an instance is feasible if and only
if the set of feasible solutions for this instance is not empty.

To use computational complexity results obtained for decision problems in the
context of optimization problems, we may proceed as follows. For a given optimiza-
tion problem we may study a related decision problem (e.g. the feasibility problem,
or the problem of existence of a feasible solution with at least a certain value of
the objective function). If the obtained decision problem D is difficult, it implies a
certain difficulty of the optimization problem as it is more general than D.

The link between the complexity of an optimization problem, and the complexity
of related decision problems is not always simple. For example, if we think of the
Nash equilibrium problem (discussed in Chapter 4) as a problem of minimizing the
incentive of players to deviate, then, by the theorem of Nash, the natural correspond-
ing decision problems become trivial: there always exists a solution (equilibrium)
such that no player wants to deviate. Some other related decision problems, e.g., if
there exists an equilibrium with at least a certain payoff for each of the players, are
NP-complete (see Section 1.1.1 for a definition). Nevertheless, the problem of find-
ing a Nash equilibrium, which is equivalent to the optimization problem we started
with, falls into yet another complexity class: it is PPAD-complete (see Chapter 4).

From an algorithm for an optimization problem we expect that the output it
provides may be interpreted as one of the feasible solutions, or the information that
no feasible solution exists. If the solutions that a particular algorithm returns are
always optimal, then we call this algorithm an exact algorithm. If an algorithm
produces solutions that are close to optimal (but still feasible), then we call it an
approximation algorithm.

In this thesis, we are mainly interested in problems with the following property.
For a given instance of the problem, there is a finite number of feasible solutions.
Typically, the number of feasible solutions will be exponential in the size of the
instance encoding, and no polynomial time algorithm can examine all of the feasible
solutions.

Asymptotic notation. Running times of algorithms are expressed as functions
from the size of the problem instance to the number of operations that the algorithm
is allowed to perform. These functions map nonnegative integers into nonnegative
integers. We need to compare such functions to be able to conclude that one algo-
rithm is faster than the other. As we would like to ignore constant factors in the
running time, we will use the following notation (see [CLRS01]).

Let N be the set of nonnegative integers (also called natural numbers). In this
section all the functions are of the type N → N. We use f(n), g(n) to denote
functions that take parameter n.

4 Preliminaries

Definition 1.1.1

O(g(n)) = {f(n) : ∃c,n0>0 0 ≤ f(n) ≤ cg(n) for all n ≥ n0},
Ω(g(n)) = {f(n) : ∃c,n0>0 0 ≤ cg(n) ≤ f(n) for all n ≥ n0},
Θ(g(n)) = O(g(n)) ∩ Ω(g(n)),

o(g(n)) = {f(n) : ∀c>0∃n0>0 0 ≤ f(n) < cg(n) for all n ≥ n0},
ω(g(n)) = {f(n) : ∀c>0∃n0>0 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

For brevity, we will abuse the notation and write f(n) = O(g(n)), f(n) =
Ω(g(n)), etc. to denote f(n) ∈ O(g(n)), f(n) ∈ Ω(g(n)), . . ., respectively. The
intuitive meaning of these symbols is the following. If we write f(n) = o(g(n)),
f(n) = O(g(n)), f = Θ(g(n)), f(n) = Ω(g(n)), or f(n) = ω(g(n)), then for big
enough values of n (ignoring constant factors) we have f(n) < g(n), f(n) ≤ g(n),
f(n) ≈ g(n), f(n) ≥ g(n), or f(n) > g(n), respectively.

1.1.1 P vs. NP

Here we discuss complexity classes, which are sets of problems with similar com-
putational complexity. Whether a problem belongs to a particular complexity class
depends on the existence of an appropriate algorithm for this problem.

Consider a function f : N → N. Define DTIME(f(n)) to be the class of prob-
lems for which there exist deterministic algorithms which run in at most O(f(n))
time on the input of size n. We use the word deterministic to emphasize that we
mean algorithms whose computation depends only on the input data, and would
always be the same, no matter how many times we run the algorithm. There are,
however, different possibilities. One may study randomized algorithms that “flip
coins” to make certain decisions. We discuss them in Section 1.3.

Another type of algorithms are nondeterministic algorithms. Part of their de-
cisions depend on some additional input, e.g., the position of stars in the sky or
a hint from a friendly oracle. We say that a nondeterministic algorithm accepts
an instance if there exists a hint that makes the algorithm output “yes, it is a yes
instance”. The additional input (hint) that convinces the algorithm that a given
instance is a “yes” instances is called a certificate. We define NTIME(f(n)) to be
the class of problems for which there exist nondeterministic algorithms that run in
at most O(f(n)) time on the input of size n.

Observe that nondeterministic algorithms are at least as powerful as the de-
terministic ones. Namely, if there exists a deterministic algorithm for a problem,
we may think that it is also a nondeterministic algorithm, which is simply not us-
ing any hint (i.e., has no nondeterministic decisions to make). Therefore, we have
NTIME(f(n)) ⊇ DTIME(f(n)) for any f(n). Is the converse true? Is it true for
some specific choice of f(n)? To the best of our knowledge, no rigorous mathemat-
ical proof that would resolve the above questions has been found.1

1For the space restricted computations, however, it was shown that nondeterministic linear time
algorithms are more powerful that deterministic linear time algorithms [Gur90].

1.1 Problems, algorithms and computation complexity 5

Intuitively, a good hint can make the problem easier. For example, suppose the
problem is to decide if there exists in a given set an object with a special property.
A nondeterministic algorithm may use a hint on which object to consider and say
“yes” if the chosen object is good enough. Observe, that whenever an object with
the special property exists, there is a hint that will convince the algorithm. However,
if no special object exists, no hint will make the algorithm say “yes”. Therefore,
the described algorithm accepts exactly when there exists a good object in the set.
By contrast, it seems that a deterministic algorithm cannot do any better then just
examine all the objects in the set. Intuitive arguments like this, are sufficient to
convince most of the researchers that nondeterministic algorithms are strictly more
powerful that the deterministic ones. Such a statement, although formally unproven,
is often used by the researchers as a conjecture. Before we state this conjecture more
formally, let us first restrict our attention to algorithms with limited running time.

For solving problems with a computer we need algorithms whose running times
are reasonable. A commonly accepted criterion for the algorithm to be called effi-
cient is that its running time is bounded by a polynomial function of the input size.
The class of decision problems having efficient deterministic algorithms is called P
and is defined as

P = ∪i∈NDTIME(ni).

Another important class of problems is NP . It contains the problems that have
polynomial time nondeterministic algorithms and is defined as

NP = ∪i∈NNTIME(ni).

The class NP may also be described as the class of problems, for which there exist
compact certificates for the “yes” instances. Whether a certificate really certifies a
particular “yes” instance needs to be testable by a deterministic polynomial time
algorithm, called verifier. For the problem to be in NP , there needs to be a verifier
that accepts at least one certificate for each “yes” instance and no certificate for a
“no” instance. Note the asymmetry of problems from NP , only the “yes” instances
are guaranteed to have certificates. A complementary class called coNP is the class
of problems for which the “no” instances are guaranteed to have compact certificates.
Unless NP = coNP (which is considered unlikely by the experts in the field), there
are, in general, no certificates for “no” instances of the NP problems.

By far the most intriguing open problem in theoretical computer science, and
perhaps in modern mathematics, is the question whether P is equal to NP . A great
number of researchers have attempted to resolve this question. For some recent
efforts to solve this problem see [Woe]. As mentioned above, most of the researchers
interested in the field of computational complexity believe that P is a proper subset
of NP . In other words, it is believed that for the hardest problems from the class
NP there are no polynomial time deterministic algorithms.

The P vs. NP problem has been a central issue since the publication of results by
Cook and Levin. Cook [Coo71] found a problem which is essentially as hard as any
other problem in the class NP . This problem is called 3-SAT and it asks whether
or not there exists an assignment of “true”/“false” values to logical variables in a

6 Preliminaries

given formula2 which satisfies the formula. Cook proved that any problem from the
class NP may be polynomially reduced3 to the 3-SAT problem. We call a problem
NP-hard if it has this property, i.e., if it is at least as difficult as any other problem
in the class NP. If the studied problem is NP-hard and belongs to NP, then we call
it an NP-complete problem. Simultaneously Levin [Lev73] studied different NP-
complete problems. His results are considered to be essentially equivalent to the
findings of Cook, hence the NP-completeness of the 3-SAT problem is often referred
to as the Cook and Levin Theorem. Many other problems have been subsequently
proven to be NP-complete.

The P vs. NP question can be rephrased to ask whether an NP-complete prob-
lem, e.g., 3-SAT, belongs to the class P. Therefore, asking for a polynomial time
algorithm for an NP-complete problem is equivalent to asking for a proof of P = NP .
Hence, when a problem is proven to be NP-complete, we often give up our attempts
to find a deterministic polynomial time algorithm to solve it, and conclude that such
an algorithm does not exist under the P 6= NP conjecture.

One of the possible paths to follow while dealing with an NP-complete problem
is to look for algorithms that solve the problem approximately. Formally, we will not
talk about approximation algorithms for decision problems, but rather change them
into optimization problems first. This approach allows to separate constraints that
need to be satisfied from those that may potentially be given up. The latter con-
straints may be turned into an objective function, which encodes a certain penalty
for violating a constraint. Computing approximate solutions for such optimization
problems is the main topic of this thesis.

1.1.2 IP and LP

Many combinatorial optimization problems may easily be expressed in the form
of an Integer Program (IP)4. An IP is an optimization problem, whose feasible
solutions are defined in terms of linear inequalities with an additional requirement
that the variables should only take integral values. The objective function is also

2In the 3-SAT problem the formula is assumed to be in a special 3-CNF form, i.e., it is assumed
to be a conjunction of clauses, each of the clauses is a disjunction of at most three literals, where
a single literal is a logical variable or its negation.

3A polynomial reduction from problem A to problem B is a function r : A → B with the
following properties. For any instance a ∈ A the computation of r(a) is possible in time polynomial
in the size of a, and therefore the size of r(a) is also polynomial. Moreover, we require that r(a) is a
“yes” instance of problem B if and only if a is a “yes” instance of problem A. Suppose there exists
a deterministic polynomial time algorithm for the problem B, we may combine this algorithm with
reduction r to get a deterministic polynomial time algorithm for problem A. Therefore, such a
reduction from A to B may be interpreted as an indication that A is at most as difficult as B.

4To be more precise, we could use a name Integer Linear Programs (ILP), since we assume both
the objective function and the constraints to be linear. However, we will mainly study the linear
problems, and we decided to use the shorter name, IP in place of ILP. The only place in this thesis
where nonlinear integer programs are considered is the Section 3.4.5. There we use an integer
program with a quadratic objective function, which we call Integer Quadratic Program (IQP).

1.1 Problems, algorithms and computation complexity 7

required to be linear. A standard form of a maximization IP is the following.

max cT x, (1.1)

subject to Ax ≤ b, (1.2)

x ∈ Nn (1.3)

where x is a vector of n elements, which we call variables, A ∈ Rm×n and b ∈ Rm

are the given coefficients defining the set of feasible solutions, and c ∈ Rn is the
vector of coefficients defining the objective function.

Since integer programs are optimization problems, not all the complexity results
obtained for decision problems are applicable here. In particular, it makes little
sense to ask whether an IP problem belongs to the class NP. However, we may
encode any NP-complete problem as an integer program. Therefore, we say that
the problem of solving IPs is in general NP-hard. We may interpret such an encoding
as an argument for the nonexistence of a polynomial time algorithm for solving IPs.

For certain integer programs (e.g., programs encoding instances of a particular
optimization problem) the related decision problems (like feasibility) are often NP -
complete. In such cases, we also say that these integer programs are NP -hard.

Despite the complexity of integer programming in general, many IP formulations
of real life problems may actually be solved. For an extensive coverage of methods
for solving IPs we would like to direct an interested reader to [NW88].

Consider the following, related type of problems. If we drop the integrality
requirement in an IP, we obtain a Linear Program (LP). An LP asks to optimize
a linear function subject to linear constraints, but, in contrast to IP, the variables
may take any real values. A standard form of a maximization LP is

max cT x, (1.4)

subject to Ax ≤ b, (1.5)

x ≥ 0. (1.6)

Since the above LP formulation is a relaxation of the IP formulation (1.1)-(1.3),
the value of the optimal solution to the LP formulation yields an upper bound on
the value of the optimal solution to the IP program. The difference between these
values is called the integrality gap of the IP.

Linear programs have many useful features, such as the existence of dual pro-
grams with interesting properties. In particular, the LP defined by (1.4)-(1.6) has
the following dual program

min bT y, (1.7)

subject to AT y ≥ c, (1.8)

y ≥ 0. (1.9)

The dual of the dual program is again the original (primal) program. Consider a fea-
sible solution x to the primal problem and a feasible solution y to the dual problem.

8 Preliminaries

Let z(x) and z′(y) denote the values of these solutions. The Weak Duality Theorem
states that z(x) ≤ z′(y). The Strong Duality Theorem states that, assuming the
existence of optimal solutions to both programs, the values of the optimal solutions
are equal.

For a number of algorithms discussed in this thesis, it is essential that linear
programs are polynomially solvable. The first polynomial time algorithm for LPs
was the ellipsoid method. The ellipsoid method is an algorithm for solving con-
vex optimization problems introduced by Naum Z. Shor, Arkady Nemirovsky, and
David B. Yudin in 1972. Leonid Khachiyan [Kha79] used the method to prove the
polynomial-time solvability of linear programs.

Linear and integer programming problems have been extensively studied. For
an overview of the classical results it this field we recommend [Sch86; NW88].

1.2 Approximation algorithms

We will now discuss the main topic of this thesis, approximation algorithms for
optimization problems. From an approximation algorithm we expect that it com-
putes “reasonable” solutions in polynomial time. As we would like our algorithms
to be practical, we prefer algorithms that are really fast (e.g. run in linear time).
Nevertheless, from the theoretical point of view, we find it more important that the
algorithm we study computes provably good solutions, as long as its running time
is polynomial.

We say that an algorithm is a λ-approximation algorithm for a minimization
problem A if, given any input a ∈ A, it produces, in polynomial time, a solution
that is at most λ times more expensive than an optimal solution to a. By analogy, we
say that an algorithm is a λ-approximation algorithm for a maximization problem
B if, given any instance b ∈ B, it produces, in polynomial time, a solution that
has value at least λ times the value of an optimal solution to b. Observe, that we
have λ ≥ 1 in approximation algorithms for minimization problems and λ ≤ 1 for
maximization problems. We call λ the approximation guarantee. Depending on the
considered algorithm, the parameter λ may either be an absolute constant or it may
be expressed as a function of the instance size.

We shall emphasize the worst case flavor of the above definition. For differ-
ent instances of a problem an approximation algorithm typically gives approximate
solutions of different quality. The approximation guarantee of an algorithm for a
particular problem is determined by the instances of the problem that are worst for
the studied algorithm. It is often the case, that the same approximation algorithm,
when considered as an algorithm for the problem restricted to only a subset of
instances, may actually be proven to have a much better approximation guarantee.

Well known combinatorial optimization problems such as the Graph Coloring
problem, the Independent Set problem, or the Maximum Clique problem are difficult
to approximate. For these problems the existence of a n1−ǫ-approximation algorithm

1.2 Approximation algorithms 9

for any positive ǫ would imply a collapse of certain complexity classes5. For these
difficult problems, researchers still try to estimate the values of optimal solutions to
particular instances (see e.g. [Gvo08]).

Some other problems are easier to approximate. For the Set Cover problem,
for example, it is possible to compute ln(n)-approximate solutions with a greedy
algorithm. Still, constant factor approximation algorithms for this problem are
rather unlikely to exist, as shown by Feige [Fei98]. For more discussion about the
Set Cover problem and its variants, see Chapter 5.

For a number of problems, constant factor approximation algorithms exist. The
class of problems having this property is called APX. Many, otherwise hard to
approximate, problems become constant factor approximable under the assumption
that the objective function is metric. For an example of a problem with a metric
version having constant factor approximation algorithms, see the Facility Location
Problem discussed in Chapter 2. Within the class APX, we distinguish the hardest
to approximate problems, which are called APX-complete problems. A minimization
(maximization) problem is APX-complete if there exists a positive constant ǫ such
that the problem of finding (1 + ǫ)-approximate ((1 − ǫ)-approximate) solutions to
the problem is NP-hard.6

There is a class of problems for which arbitrarily good approximations are possi-
ble. Formally, for such a problem there exists an infinite sequence of approximation
algorithms whose approximation ratios get closer to 1. We express this approxima-
tion guarantee as 1+ ǫ, where ǫ tends to 0. Such a sequence of algorithms is called a
Polynomial Time Approximation Scheme (PTAS). Observe, that proving a problem
APX-complete is equivalent to disproving the existence of a PTAS for the problem,
unless P = NP . For many problems restricted to only dense7 instances there exist
approximation schemes [AKK99].

Each of the algorithms in a PTAS has running time polynomial in the instance
size, but as we choose algorithms with better approximation guarantee, typically,
their running time gets longer. Therefore, we express the running time of PTAS as
a function of both the input size and the approximation guarantee 1+ǫ. PTAS with
the additional property that the running time is also polynomial in 1/ǫ is called a
Fully Polynomial Time Approximation Scheme (FPTAS).

For a detailed presentation of various techniques used in approximation algo-
rithms we recommend [Vaz01]. For a compendium of approximation results for a
number of NP-hard problems see [CK].

5It would imply NP = ZPP [Has99].
6Originally, the class of APX-complete problems was defined to be the problems hardest in APX

under PTAS-reductions (also called L-reductions). With the recent results from the PCP theory,
we know that finding arbitrarily good approximations for APX-complete problems is actually NP-
hard.

7For graphical problems, an instance is dense if the underlying graph has a minimum degree
Ω(n), where n is the number of vertices. For constraint satisfaction problems, dense instances are
the instances where each variable is involved in a large number of constraints.

10 Preliminaries

FPT algorithms. We will now discuss an alternative approach to NP-hard prob-
lems. For certain NP-hard problems there exist natural parameters (like the size
or the value of an optimal solution) and there exist algorithms whose running time
becomes polynomial if we assume the value of such a parameter to be fixed.

We say that problem A is Fixed-Parameter Tractable (FPT) with respect to
parameter k if there exists a deterministic algorithm solving A with running time
in O(p(n) · f(k)), where p(n) is a polynomial function of n and f(k) is an arbitrary
function of k. We may also use a notation O∗(f(k)) which neglects the polynomial
part of the running time of an FPT algorithm. Note, that an algorithm with running
time nk is not considered to be an FPT algorithm.

We only briefly mention the concept of parametrized complexity as it is related
to approximation algorithms. For a textbook on FPT see [DF99]. In this thesis,
FPT algorithms are provided for two of the studied problems (see Corollary 3.3.6
and Theorem 3.4.6).

1.3 Randomized algorithms

We have already discussed deterministic and nondeterministic algorithms. We
argued that the nondeterministic algorithms are perhaps more powerful, but less
realistic to implement on a computer. We will now consider yet another group of
algorithms, the randomized algorithms.

Recall, that the computation of a nondeterministic algorithm was described as
being dependent on some additional input, which we also called a hint. Imagine,
that these hints are now given randomly, and as a result, the actual computation is
a random process with a random outcome. A randomized algorithm may, hence, be
thought of as a nondeterministic algorithm equipped with a source of random bits.

With randomized algorithms for decision problems, we may now talk about
the probability that an algorithm will accept a particular instance of the problem.
Values like the running time of an algorithm on a particular instance, or the value of
a produced solution, in case of an optimization problem, become random variables.
We may study distributions of these variables and prove statements about their
expected values.

We often distinguish two types of randomized algorithms. An algorithm that
always returns the right answer (optimal solution in case of optimization), but whose
running time depends on the random choices is called a Las Vegas algorithm. An
algorithm whose output is random is called a Monte Carlo algorithm.

In Monte Carlo algorithms for decision problems, we also distinguish the al-
gorithms that can be wrong only in one type of instances (either only for “yes”
instances or only for “no” instances). Algorithms with this property are called
one-sided error and the remaining algorithms are called two-sided error.

In the context of approximation algorithms, we are mostly interested in ran-
domized algorithms that always run in polynomial time and always return feasible
solutions (or a proof that an instance is infeasible). The value of the objective

1.4 Results in this thesis 11

function in the obtained solution is typically a random variable whose distribution
we study. We say that an algorithm is a randomized λ-approximation algorithm
for an optimization problem A if it runs in polynomial time, and for each instance
a ∈ A the expected value of the produced solution is at most λ times the value of
an optimal solution to the instance a.

Each of the randomized approximation algorithms provided in this thesis may be
derandomized using the standard method of conditional expectation. We present one
such derandomization explicitly (see Section 3.2.3) as we find it important to give an
accurate running time analysis for this particular algorithm. A general discussion
of the conditional expectation method, also called the probabilistic method may be
found in the book by Motwani and Raghavan [MR95].

A note on determinism. We may question if the computational model of ran-
domized algorithms is any more realistic than the model of nondeterministic al-
gorithms. Philosophers dispute about the (non)determinism of the universe (see,
e.g., [Abe76]). If there is no source of pure randomness, we cannot expect to per-
fectly implement algorithms that greatly depend on randomness.

With the algorithms provided in this thesis, however, the problem with ran-
domness is not an issue, because the presented algorithms have their deterministic
counterparts (which we may construct with the method of conditional expectation,
as already mentioned above). The main purpose of using the language of random-
ized algorithms in this context is to simplify the analysis of the discussed algorithms.
For example, the algorithms presented in Section 3.2 are essentially producing com-
pletely random solutions. If we had presented only a derandomized version of these
algorithms, we would make our arguments unnecessarily technical and inaccessible.

1.4 Results in this thesis

In this thesis we provide approximation algorithms for four different problems.
Each problem is discussed in a separate chapter.

In Chapter 2, we consider the Facility Location problem, which is the following.
We are given a set of possible locations of facilities and a set of clients who require
a certain service. The task is to open a number of facilities such that each of the
clients is serviced and the total cost of the solution is minimal. Depending on the
structure of the cost functions and additional properties required from the solution,
we obtain variants of the problem. Section 2.1 contains an overview of the existing
algorithms for a number of these variants. It is based on a joint work with Karen
Aardal and Mohammad Mahdian [ABM08]. In the following two sections, which
are based on a joint work with Karen Aardal, we address the most standard version
of the problem, the metric Uncapacitated Facility Location (UFL) problem. The
previously best known approximation ratio for the UFL problem was achieved by
the 1.52-approximation algorithm of Mahdian, Ye and Zhang. In Section 2.2 we give
a lower bound of 1.4943 on the approximation ratio of this algorithm. Our result

12 Preliminaries

was published as [BA07]. Section 2.3 contains the main results of this chapter. Here,
we present an optimal bifactor approximation algorithm for the UFL problem. We
show, that a combination of the new algorithm with the approximation algorithm
of Jain, Mahdian, and Saberi results in a 1.5-approximation algorithm for the UFL
problem. We also improve the approximation ratio for the 3-level version of the
problem. A preliminary version of these results appeared in [Byr07].

In Chapter 3, we study problems motivated by phylogenetics. Phylogenetics de-
scribes connections between all groups of living organisms by ancestor/descendant
relationships. The evolutionary history of certain groups of species is modelled with
phylogenetic networks. In Sections 3.2 and 3.3, we study problems of constructing
phylogenetic trees/networks from data that is given in the form of small trees called
triplets. In Sections 3.2, which is based on a joint work with Pawel Gawrychowski,
Katharina Huber, and Steven Kelk [BGHK08], we show that, assuming a fixed
geometry of a network, random placement of species is consistent with a certain
fraction of the input data. As a result, we improve approximation ratios for con-
structing, so called, level-2 and level-3 networks. In Section 3.3, we speculate if a
better than random solution is possible, at least under a certain restriction on the
shape of the networks. A number of partial results is presented. Part of them will
appear in [BGJ08]. Section 3.4 is dedicated to a related problem of comparing given
trees. Rather than computing a distance measure, we propose to draw the given
pair of binary trees in such a way, that the structural differences are easy to spot.
Formally, we ask for a planar drawing of trees, such that if we connect correspond-
ing leaves of each tree with straight lines, the number of crossings between these
lines will be minimal. We give a 2-approximation algorithm for the full-binary case
and show that, assuming that the Unique Games Conjecture holds, constant factor
approximation for general binary trees in not possible. The section is based on a
joint work with Kevin Buchin, Maike Buchin, Martin Nöllenburg, Yoshio Okamoto,
Rodrigo Silveira, and Alexander Wolff [BBB+08].

In Chapter 4, we consider the problem of computing approximate Nash equilibria
in Noncooperative games. It has been recently proven, that finding an equilibrium is
essentially as hard as finding a fixed point of a function. We give an algorithm that,
in polynomial time, finds strategies that form a, so called, additive approximate
Nash equilibrium. The chapter is based on a joint paper with Hartwig Bosse and
Vangelis Markakis [BBM07].

In Chapter 5 we study a generalization of the standard Set Cover problem. The
Set Cover problem is to cover a certain set of elements with a minimal number of
subsets, chosen from the family of subsets given as an input. In the k-SetCover
problem, each element needs to be covered at least k times, but each subset may be
used many times. We give a constant factor approximation algorithm for the case
where k is at least logarithmic in the number of elements to cover. The chapter
is based on a joint work with Richard Beigel and Marcin Bienkowski. An earlier
version of the argument was given in [BB05].

Chapter 2

Facility location

2.1 On facility location problems

Facility location problems concern situations where a planner needs to deter-
mine the location of facilities intended to serve a given set of clients. The objective
is usually to minimize the sum of the cost of opening the facilities and the cost
of servicing the clients by the facilities, subject to various constraints, such as the
number and the type of clients a facility can serve. There are many variants of
the facility location problem, depending on the structure of the cost function and
the constraints imposed on the solution. Early references on facility location prob-
lems include Kuehn and Hamburger [KH63], Balinski and Wolfe [BW63], Manne
[Man64], and Balinski [Bal66]. Review works include Krarup and Pruzan [KP83]
and Mirchandani and Francis [MF90].

Perhaps the simplest version of the problem is the uncapacitated facility lo-
cation (UFL) problem. This problem was first formulated by Kuehn and Ham-
burger [KH63] and has since been studied extensively in the operations research
literature, see for instance [Bal66; Sto63; Erl78; Man64; CNW90; Vyg05; KP83;
MF90]. It is interesting to notice that the algorithm that is probably one of the
most effective ones to solve the UFL problem to optimality is the primal-dual algo-
rithm combined with branch-and-bound due to Erlenkotter [Erl78] dating back to
1978. His primal-dual scheme is similar to techniques used in the modern literature
on approximation algorithms.

More recently, extensive research on approximation algorithms for facility loca-
tion problems has been carried out. Review articles on this topic include Shmoys
[Shm00; Shm04] and Vygen [Vyg05]. Besides its theoretical and practical impor-
tance, facility location problems provide a showcase of common techniques in the
field of approximation algorithms, as many of these techniques such as linear pro-
gramming rounding, primal-dual methods, and local search have been applied suc-
cessfully to this family of problems. This section defines several facility location
problems, gives a few historical pointers, and lists approximation algorithms. Since
the contributions of the author of this thesis are mainly to the UFL problem, the

13

14 Facility location

techniques applied to this problem are discussed in some more detail.

2.1.1 Problem definition

In the UFL problem, we are given a set F of nf facilities and a set C of nc clients
(also known as cities, or demand points). For every facility i ∈ F , a nonnegative
number fi is given as the opening cost of i. Furthermore, for every facility i ∈ F and
client j ∈ C, we have a connection cost cij . The objective is to open a subset of the
facilities and connect each client to an open facility so that the total cost is mini-
mized. Notice that once the set of open facilities is specified, it is optimal to connect
each client to the open facility that yields smallest connection cost. Therefore, the
objective is to find a set S ⊆ F that minimizes

∑

i∈S fi +
∑

j∈C mini∈S{cij}. This
definition and the definitions of other variants of the facility location problem in this
section assume unit demand at each client. It is straightforward to generalize these
definitions to the case where each client has a given demand. The UFL problem can
be formulated as the following integer program due to Balinski [Bal66]. Let yi, i ∈ F
be equal to 1 if facility i is open, and equal to 0 otherwise. Let xij , i ∈ F , j ∈ C
be the fraction of client j assigned to facility i.

min
∑

i∈F
fiyi +

∑

i∈F

∑

j∈C
cijxij (2.1)

subject to
∑

i∈F
xij = 1, for all j ∈ C, (2.2)

xij − yi ≤ 0, for all i ∈ F , j ∈ C, (2.3)

xij ≥ 0, yi ∈ {0, 1} for all i ∈ F , j ∈ C. (2.4)

Notice that in the uncapacitated case, it is not necessary to require xij ∈ {0, 1}, i ∈
F , j ∈ C if we want each client to be serviced by precisely one facility. We have
0 ≤ xij ≤ 1 by constraints (2.2) and (2.4), and if xij is not integer, then it is
always possible to create an integer solution with the same cost by assigning client
j completely to one of the facilities currently servicing j. In the linear programming
(LP) relaxation of UFL the constraint y ∈ {0, 1}nf is substituted by the constraint
y ∈ [0, 1]nf .

Hochbaum [Hoc82] developed an O(log n)-approximation algorithm for UFL.
By a straightforward reduction from the Set Cover problem, it can be shown that
this cannot be improved unless NP ⊆ DTIME[nO(log log n)] due to a result by
Feige [Fei98]. However, if the connection costs are restricted to come from distances
in a metric space, namely cij = cji ≥ 0 for all i ∈ F , j ∈ C (nonnegativity and
symmetry) and (triangle inequality)

cij + cji′ + ci′j′ ≥ cij′ for all i, i′ ∈ F , j, j′ ∈ C, (2.5)

then constant approximation guarantees can be obtained. In all results mentioned
below, except for the maximization objectives, it is assumed that the costs satisfy
these restrictions. If the distances between facilities and clients are Euclidean, then
for some location problems approximation schemes have been obtained [ARR98].

2.1 On facility location problems 15

The first approximation algorithm for the metric UFL problem with a con-
stant performance guarantee was the 3.16-approximation algorithm by Shmoys, Tar-
dos, and Aardal [STA97]. Currently, the best known approximation guarantee is
1.5 [Byr07], which is one of the main results of this thesis and will be presented
in Section 2.3. We first briefly discuss other variants of the facility location prob-
lem and then continue with a small survey on approximation results for UFL in
Section 2.1.3.

2.1.2 Variants and related problems

Many algorithms have been proposed for location problems. We will give a quick
overview of some key results. Some of the algorithms giving the best values of the
approximation guarantee γ are based on solving the LP-relaxation by a polynomial
algorithm, which can actually be quite time consuming, whereas some authors have
suggested fast combinatorial algorithms for facility location problems with less com-
petitive γ-values. We have decided to focus on the algorithms that yield the best
approximation guarantees. For more references we refer to the survey papers by
Shmoys [Shm00; Shm04] and by Vygen [Vyg05].

max-UFL. A variant of the uncapacitated facility location problem is obtained
by considering the objective coefficients cij as the per unit profit of servicing client
j from facility i. The maximization version of UFL, max-UFL is obtained by
maximizing the profit minus the facility opening cost, i.e., max

∑

i∈F
∑

j∈C cijxij −∑

i∈F fiyi. This variant was introduced by Cornuéjols, Fisher, and Nemhauser
[CFN77], who also proposed the first constant factor approximation algorithm. They
showed that opening one facility at a time in a greedy fashion, choosing the facility to
open as the one with highest marginal profit, until no facility with positive marginal
profit can be found, yields a (1−1/e) ≈ 0.632-approximation algorithm. The current
best approximation factor is 0.828 by Ageev and Sviridenko [AS99].

k-median, k-center problem In this problem, the facility opening cost is re-
moved from the objective function (2.1) to obtain min

∑

i∈F
∑

j∈C cijxij , and the
constraint that no more than k facilities may be opened,

∑

i∈F yi ≤ k, is added. In
the k-center problem the constraint

∑

i∈F yi ≤ k is again included, but the objec-
tive function is to minimize the maximum distance used on a link between an open
facility and a client.

The first constant factor approximation algorithm for the k-median problem is
due to Charikar, Guha, Tardos, and Shmoys [CGTS99]. This LP-rounding algorithm
has the approximation ratio of 6 2

3 . The currently best know approximation ratio is
3 + ǫ achieved by a local search heuristic of Arya, et al. [AGK+01].

The first constant factor approximation algorithm for the k-center problem was
given by Hochbaum and Shmoys [HS85], who developed a 2-approximation algo-
rithm. This performance guarantee is the best possible unless P = NP .

16 Facility location

Capacitated facility location problem. In this problem, a capacity constraint
∑

j∈C xij ≤ uiyi is added for all i ∈ F . Here it is important to distinguish between
the splittable and the unsplittable case, and also between hard capacities and soft
capacities. In the splittable case we have x ≥ 0, so we allow for a client to be serviced
by multiple depots, and in the unsplittable case we require x ∈ {0, 1}nf×nc . If each
facility can be opened at most once (i.e., yi ∈ {0, 1}), the capacities are called hard;
otherwise, if the problem allows a facility i to be opened any number r of times to
serve rui clients, (i.e., if yi’s are allowed to be non-negative integers) the capacities
are called soft capacities.

For the soft-capacitated problem with equal capacities the first constant factor
approximation algorithms are due to Shmoys et al. [STA97] for both the splittable
and unsplittable demand cases. Recently, a 2-approximation algorithm for the soft
capacitated facility location problem with unsplittable unit demands was proposed
by Mahdian et al. [MYZ06]. The integrality gap of the LP relaxation for the problem
is also 2. Hence, to improve the approximation guarantee one would have to develop
a better lower bound on the optimal solution.

In the hard capacities version it is important to allow for splitting the demands
as otherwise even the feasibility problem becomes difficult. Suppose demands are
splittable, then we still distinguish between the equal capacity case, where we have
ui = u for all i ∈ F , and the general case. For the problem with equal capaci-
ties, a 5.83-approximation algorithm was given by Chudak and Wiliamson [CW99].
Subsequently, Levi et al. [LSS04] gave a 5-approximation LP-rounding algorithm.

The first constant factor approximation algorithm, with γ = 8.53+ ǫ, for general
capacities was given by Pál, Tardos, and Wexler [PTW01]. This was later improved
by Zhang, Chen, and Ye [ZCY05] who obtained a 5.83-approximation algorithm also
for general capacities.

k-level facility location. In this problem, we are given a set C of clients, k
disjoint sets F1, . . . ,Fk of facilities, an opening cost for each facility, and connection
costs between clients and facilities. The goal is to connect each client j through a
path i1, . . . , ik of open facilities, with iℓ ∈ Fℓ. The connection cost for this client is
cji1 + ci1i2 + · · ·+ cik−1ik

. The goal is to minimize the sum of connection costs and
facility opening costs.

The first constant factor approximation algorithm for k = 2 is due to Shmoys
et al. [STA97], with γ = 3.16. For general k, the first algorithm, having γ = 3,
was proposed by Aardal, Chudak, and Shmoys [ACS99]. For k = 2, Zhang [Zha04]
developed a 1.77-approximation algorithm. He also showed that the problem for
k = 3 and k = 4 can be approximated by γ = 2.523 1 and γ = 2.81 respec-
tively. In this thesis we also improve the approximation factor for the 3-level UFL
problem. Namely, we give a 2.492-approximation algorithm (see Theorem 2.3.11 in
Section 2.3.6).

1This value of γ deviates slightly from the value 2.51 given in the paper. The original argument
contained a minor calculation error.

2.1 On facility location problems 17

Fault tolerant facility location. In this problem (first defined in [JV00]), we
are given a connectivity requirement rj for each client j, which specifies the number
of distinct open facilities to which client j should be connected.

Facility location with outliers. In this problem, a number l is given as part
of the input, and the solution is only required to connect nc − l clients to open
facilities. This variant and the next one were defined by Charikar et al. [CKMN01].

Prize collecting facility location. In this problem, for each client j, there is
a specified penalty pj . A solution has the option of either connecting j to an open
facility, or paying this penalty. The goal is to minimize the sum of the penalties
paid, the facility costs, and the connection costs.

k-facility location problem. This problem (defined in [KP90]) is a common
generalization of k-median and UFL, where in addition to facility opening costs, an
upper bound k on the number of facilities that can be opened is imposed.

Universal facility location. In this problem, the cost of each facility i ∈ F is
given as a function fi : {0, . . . , nc} 7→ R≥0 ∪ {∞} with fi(0) = 0, where the value
of fi(k) indicates the cost of opening facility i, when it is used to serve k clients.
Formally, a solution to this problem can be represented as a function ϕ : C → F
that assigns each client to a facility. The cost of this solution is the sum of the
facility cost

∑

i∈F fi(|{j : ϕ(j) = i}|) and the connection cost
∑

j∈C cϕ(j),j . The
universal facility location problem (first defined in [HMM03; MP03]) generalizes
several variants of the facility location problem such as UFL (where the function
fi(u) is constant for u > 0), hard-capacitated facility location (where fi(u) is a
constant for 0 < u ≤ ui and is infinity for larger values of u), and soft-capacitated
facility location (where fi(u) is the opening cost of the facility times ⌈u/ūi⌉).

There are many other variants of the facility location problem that we will not
discuss here. Examples include online facility location [Mey01; Fot03; ABUvH04],
multicommodity facility location [RS04], priority facility location [RS04; Mah04],
facility location with hierarchical facility costs [ST06], stochastic facility loca-
tion [RS06; Mah04; GPRS04], connected facility location [SK04], load-balanced
facility location [GMM00; KM00; Mah04], concave-cost facility location [HMM03],
and capacitated-cable facility location [RS02; Mah04].

2.1.3 Algorithms for UFL

We will now focus on the metric Uncapacitated Facility Location problem (which
we call UFL). Many algorithms have been proposed for this problem. They include
heuristics, approximation algorithms and exact algorithms. We concentrate on the
approximation algorithms and give a quick overview of the important classical results
and the current state of knowledge. Eventually, we will conclude this section with

18 Facility location

the statement of the author’s main contributions, whose technical expositions will
be given in the two subsequent sections.

Before we start with the description of algortihms having a provable approxi-
mation guarantee, we mention an early primal-dual algorithm for UFL proposed
by Erlenkotter [Erl78]. This algorithm is computationally efficient, but no analysis
of the quality of the solutions it produces was provided. Nevertheless, many later
algorithms use similar ideas.

LP-rounding algorithms. The LP-rounding algorithms first solve the LP-
relaxation of the problem, and then round the (potentially fractional) solution to
an integral one. Such rounding maintains the feasibility of the solution, i.e., no
constraint gets violated, but also potentially increases the cost of the solution. In
the analysis, one needs to prove that this cost increase is bounded, in this case by a
multiplicative constant. The following two techniques are essential in construction
of LP-rounding algorithms for the UFL problem.

Filtering. A method of modifying the LP-solution, called filtering, was intro-
duced by Lin and Vitter [LV92]. Lin and Vitter considered a broad class of 0-1
problems having both covering and packing constraints. They start by solving the
LP-relaxation of the problem, and in the subsequent filtering step they select a
subset of the variables that have positive value in the LP solution and that have
relatively large objective coefficients. These variables are set equal to zero, which
results in a modified problem. The LP-relaxation of this modified problem is then
solved and rounding is applied.

In the paper by Shmoys et al. [STA97] filtering was used in order to bound
the connection costs. Here again a subset of the variables that have a positive
value in the LP-solution are set equal to zero. The remaining positive variables
were scaled so as to remain feasible for the original LP-relaxation. Another way to
describe this process is as follows. The facility opening variables yi are scaled up
by a constant γ > 1 and then the connection variables xij are adjusted to use the
closest possible facilities. In case the scaling factor γ is chosen randomly (from some
specific distribution) we use the name randomized filtering.

The filtering done in our new algorithm (see Section 2.3) is slightly different as
the filtered LP-solution is not necessarily feasible with respect to the LP-relaxation.
There we will use the name sparsening technique for the combination of filtering
with our new analysis.

Clustering. The name clustering was first used in [CS03], but the technique was
already applied in the algorithm of Shmoys et al. [STA97]. Based on the fractional
solution, the instance is cut into pieces called clusters, each of them having a dis-
tinct client called the cluster center. This is done by iteratively picking a client,
not covered by the previous clusters, as the next cluster center, and by adding the
facilities that serve the cluster center in the fractional solution, along with other
clients served by these facilities to this cluster. The construction of clusters guaran-
tees that the facilities in each cluster are open to a total extent of one, and therefore

2.1 On facility location problems 19

after opening the facility with the smallest opening cost in each cluster, the total
facility opening cost paid does not exceed the facility opening cost of the fractional
solution. Moreover, by choosing clients for the cluster centers in a greedy fashion,
the algorithm makes each cluster center the minimizer of a certain cost function
among the clients in the cluster.

Having the clusters computed, the algorithm opens one facility for each cluster
center. The facility opening variables for facilities fractionally serving a cluster
center sum up to 1, hence the cost of the facilities opened by the algorithm may
be bounded with the facility opening cost in the fractional solution. Each client in
the cluster may now be connected, via the cluster center, to the open facility. The
triangle inequality for connection costs bounds the cost of such a connection.

Algorithms. The first constant factor approximation algorithm for the UFL
problem was given by Shmoys, Tardos, and Aardal [STA97]. It solves the LP re-
laxation and then modifies the obtained fractional solution as follows. First, the
filtering technique is applied to change the fractional solution. Then, based on this
modified fractional solution the instance is divided into clusters. Eventually, clients
are connected to facilities, which are open in each cluster as described above. For
UFL, this filtering and rounding algorithm is a 4-approximation algorithm. Shmoys
et al. also show that if the filtering step is substituted by randomized filtering, an
approximation guarantee of 3.16 is obtained.

As was observed later [ACS99], the filtering stage may be skipped, and instead,
the values of the optimal LP-dual variables may be used to bound the maximal
connection cost between a client and a facility fractionally serving him. Such a
modified analysis gives an approximation factor of 3.

Since the algorithm of Shmoys et al. a couple of modifications to the rounding
procedure have been proposed. Chudak and Shmoys [Chu98; CS03] developed a
randomized version of the rounding procedure, which improved the approximation
factor to 1 + 2/e ≈ 1.736. Later, Sviridenko [Svi02] combined randomized filtering
with randomized rounding. By a complicated analysis, he proved that the resulting
algorithm has the approximation ratio equal 1.58.

We propose yet another rounding procedure that is similar to the algorithm of
Sviridenko, but uses a new argument in the analysis. The quality of the result-
ing algorithm is best described in terms of the bifactor approximation language
(defined below). In particular, we prove that our algorithm is a (1.6774,1.3738)-
approximation algorithm for the UFL problem. This property makes it possible
for us to combine this algorithm with the algorithm of Mahdian et al. [MYZ06] to
obtain a 1.5-approximation for the UFL problem.

Primal-dual algorithms. Another group of algorithms for the UFL problem is
formed by the, so called, primal-dual algorithms. These algorithms, unlike the LP-
rounding algorithms, do not solve the LP-relaxation of the problem. Nevertheless,
the LP-relaxation is used in the analysis.

The main idea is to construct a feasible (integral) solution to the problem, using
complementary slackness, and a certificate that the solution is not too expensive

20 Facility location

in comparison with an optimal solution. The role of the certificate is played by
a feasible solution to the dual of the LP-relaxation of the problem. Such a dual-
feasible solution is, by weak LP duality, not more expensive than an optimal primal
feasible solution to the LP-relaxation, which is not more expensive than an optimal
integral solution.

A well known example of a primal dual algorithm for UFL is the algorithm of
Jain and Vazirani [JV01]. It is only a 3-approximation algorithm, but its simplicity
makes it possible to apply the algorithm, or its minor modification, to many variants
of the facility location problem.

Another example is the algorithm of Jain, Mahdian and Saberi [JMS02] (the
JMS algorithm). It is somewhat more careful when constructing the solution, which
yields a better approximation guarantee of 1.61. The price that is paid for this
accuracy is a more complicated analysis. To prove this approximation guarantee,
the authors needed to model a potentially bad instance by another linear program,
which they call the factor revealing LP. This LP models an instance of a fixed size.
Finally, they had to prove that for any size of an instance, the resulting LP has a
bounded value. For more details of this algorithm see Section 2.2.1.

An important property of the primal-dual algorithms is their running time. They
are relatively simple to implement, and perform only simple operations, which is
often emphasized by calling them combinatorial algorithms. It was proved [MYZ03]
that the JMS algorithm may be implemented in quasilinear time.

Bifactor approximation. Before we proceed with the other algorithms it is use-
ful to introduce one more piece of notation. The UFL problem has the particular
property that the objective function is a sum of two different types of cost, the
facility opening cost and the connection cost. While it is trivial to optimize only
one of these costs, by simply opening only one or all the facilities, it is challenging
to produce solutions with neither of the two costs being too big. We are facing a
tradeoff situation, where it is to be decided how much of the cost should be allocated
for opening facilities, and how much for connecting clients. Therefore, in the context
of the UFL problem, we consider the following definition of bifactor approximation.

Definition 2.1.1 (bifactor approximation algorithm) An (λf , λc)-approxi-
mation algorithm for the UFL problem is a polynomial time algorithm that produces
a solution whose cost is bounded by λf · F ∗ + λc · C∗ for any feasible solution with
facility cost F ∗ and connection cost C∗.

Note that, unlike in the definition of the standard approximation algorithm, the
comparison in the Definition 2.1.1 is not equivalent to bounding the cost in terms of
the cost of an optimal solution. If we only bound the cost in terms of a particular
solution, e.g. a fractional solution to the LP-relaxation of the problem, we obtain a
potentially weaker result. It may be seen as a consequence of the fact that by scaling
the facility opening costs in an instance we may change the optimal solution. The
above definition requires the produced solutions to be good in comparison with any

2.1 On facility location problems 21

feasible solution, and therefore also in comparison with solutions that are optimal
for different objective functions.

An important result that supports the use of bifactor approximation algorithm
for UFL is an approximation hardness result by Jain et al. [JMS02]. They proved
that there exists no (λf , 1 + 2e−λf − ǫ)-approximation algorithm for UFL for any
positive ǫ and λf ≥ 1 unless NP ⊂ DTIME(nlog log n). Note the asymmetry in this
hardness bound: it appears to be easier to approximate the facility opening cost
than the connection cost.

Scaling and greedy augmentation. Besides the algorithms that produce new
solutions from scratch, there are also techniques for modifying existing solutions for
the UFL problem.

The greedy augmentation technique introduced by Guha and Khuller [GK98] (see
also [CG99]) is the following. Consider an instance of the metric UFL problem and
a feasible solution. For each facility i ∈ F that is not opened in this solution, we
may compute the impact of opening facility i on the total cost of the solution, also
called the gain of opening i, denoted by gi. While there is a facility i with positive
gain gi, the greedy augmentation procedure opens a facility i0 that maximizes the
ratio of saved cost to the facility opening cost gi

fi
, and updates values of gi. The

quality of the resulting solution is expressed in the form of the following lemma.

Lemma 2.1.2 ([CG99]) For every instance I of the metric UFL problem, and
for every solution SOL of I with facility cost FSOL and connection cost CSOL,
if an initial solution has facility cost F and connection cost C, then after greedy
augmentation the cost of the solution is at most

F + FSOL max{0, ln(
C − CSOL

FSOL
)}+ FSOL + CSOL

This technique may be applied to a trivial solution, e.g. to a solution with only
the cheapest facility opened, to produce an approximation algorithm. For some
specific instances of the problem such an algorithm would actually be a pretty good
one. In particular, it is an optimal 1.463..-approximation algorithm for instances
with connection costs being equal either 1 or 3. Notice that such instances are
produced by a reduction from the Set Cover problem proving 1.463.. hardness of
approximation of the UFL problem.

Nevertheless, the greedy augmentation technique appears even more useful when
applied together with a scaling of the cost function. Suppose we are given an
approximation algorithm A for the metric UFL problem and a real number δ ≥ 1.
Consider the following algorithm Sδ(A).

1. scale up all facility opening costs by a factor δ;

2. run algorithm A on the modified instance;

3. scale back the opening costs;

22 Facility location

4. run the greedy augmentation procedure.

Following the analysis of Mahdian, Ye, and Zhang [MYZ06] one may prove the
following lemma.

Lemma 2.1.3 Suppose A is a (λf ,λc)-approximation algorithm for the metric UFL
problem, then Sδ(A) is a (λf + ln(δ),1 + λc−1

δ)-approximation algorithm for this
problem.

This method may be applied to balance a (λf ,λc)-approximation algorithm with
λf << λc, i.e., to obtain a (λ, λ)-approximation algorithm with λf < λ < λc. It
was used by Mahdian et al. [MYZ06].

2.1.4 Our contribution to facility location approximation algorithms.

It is clear from the presentation above that many different approximation algo-
rithms had been developed for the UFL problem before we started our work. But,
there was still an approximation gap between the 1.463..-hardness of approximation
by Guha and Kuller and the 1.52-approximation algorithm of Mahdian et al. The
best LP-rounding result was the 1.58-approximation by Sviridenko.

In our first attempt to close the gap, we tried to improve the complicated analysis
of Mahdian et al. As a result we proved that the approximation gap cannot be closed
by just improving the analysis of the MYZ algorithm. This result is described in
Section 2.2.

Next, we attempted to construct an improved LP-rounding algorithm. The pri-
mary goal was to obtain an algorithm with an approximation ratio better than
1.52. We failed to achieve this goal with a single LP-rounding algorithm, but we
constructed an LP-rounding algorithm which, combined with the primal-dual JMS
algorithm, gives the approximation ratio 1.5. This is currently the best known ap-
proximation ratio. A detailed presentation of this algorithm is given in Section 2.3.
With this result, we have decreased the approximation gap by 1/3. The obvious re-
maining open problem is to close this gap completely. We hope that our contribution
will help to eventually achieve this goal.

2.2 The algorithm of Mahdian et al. is not optimal

In the paper describing the 1.52-approximation algorithm, Mahdian et al.
[MYZ02] posed the following two questions.

“It might be possible to apply a method similar to the one used
in [JMS02] (i.e., deriving a factor-revealing LP and analyzing it) to an-
alyze both phases of our algorithm in one shot. This might give us a
tighter bound on the approximation factor of the algorithm.”

“The important open question is whether or not our algorithm can
close the gap with the approximability lover bound of 1.463.”

2.2 The algorithm of Mahdian et al. is not optimal 23

In a later paper Mahdian et al. [MYZ03] answered the first question in the
affirmative by presenting a new analysis of their algorithm using a single factor-
revealing LP. In this section we provide another single factor-revealing LP that
makes it possible to give a negative answer to the second open question by providing
an instance of the metric UFL problem for which their algorithm returns a solution
that is 1.4943 times more expensive than the optimal solution.

2.2.1 The algorithm

Let us first recall the following 1.62-approximation algorithm of Jain, Mahdian
and Saberi [JMS02] (the JMS algorithm).

1. Set all clients to be not connected, all facilities closed, and the budget of every
client j, denoted by Bj , to be equal 0. At every moment, each client j offers
some money from its budget to each closed facility i. The amount offered
equals max(Bj − cij , 0) if j is not connected, and max(ci′j − cij , 0) if it is
connected to some other facility i′.

2. While there is a not connected client, increase the budget of each such client
at the same rate, until one of the following events occurs:

(a) For some closed facility i, the total offer that it receives from clients is
equal to the cost fi of opening i. In this case, we open facility i, and for
every client j (connected or not connected) with a non-zero offer to i, we
connect j to i.

(b) For some not connected client j, and some facility i that is already open,
the budget of j is equal to the connection cost cij . In this case, we connect
j to i.

3. For every client j, set αj equal to the budget of j at the end of the algorithm.

The original analysis of the JMS algorithm [JMS02] shows that it is a 1.61-
approximation algorithm for the UFL problem. For us a more important property
of the JMS algorithm is that it is a (1.11, 1.78)-approximation algorithm for the
metric UFL problem, i.e., for any instance I of the metric UFL problem, and any
feasible solution with facility cost FSOL and connection cost CSOL, the cost of a
solution computed by the JMS algorithm for I is at most 1.11FSOL + 1.78CSOL.
The proof of this bifactor approximation guarantee is highly nontrivial and technical.
We refer an interested reader to the original work of the authors [MYZ02; MYZ03;
MYZ06; Mah04].

Recall the scaling + greedy augmentation technique described in the previ-
ous section. The cost asymmetry of the JMS algorithm and properties of the
greedy augmentation are exploited by the following algorithm of Mahdian, Ye and
Zhang [MYZ02] (the MYZ algorithm).

1. Scale up the facility opening costs by a factor δ ≥ 1.

24 Facility location

2. Run the JMS algorithm.

3. Scale back the facility opening costs (multiply them by a factor 1
δ).

4. Run the greedy augmentation procedure [CG99]

An equivalent formulation [MYZ03] of the MYZ algorithm describes the last two
steps as gradually scaling back the facility costs and opening any facility that may
be opened without increasing the total cost.

In the language of Lemma 2.1.3, the MYZ algorithm is the Sδ(JMS) algo-
rithm. Lemma 2.1.3 together with the (1.11, 1.78) approximation guarantee of the
JMS algorithm implies that the MYZ algorithm with δ = 1.504 is a (1.52,1.52)-
approximation algorithm for the metric UFL problem.

2.2.2 Analysis: lower bound

The original analysis of the MYZ algorithm does not give an easy way to produce
an instance of the metric UFL problem that would be “difficult” for the algorithm,
and it was not clear how tight the analysis actually was. The difficulty comes
from the fact that three techniques, namely a factor revealing LP, cost scaling, and
greedy augmentation, are combined to get the 1.52 approximation ratio. Mahdian
et al. [MYZ03] presented a new analysis of the algorithm that uses a single LP to
prove the 1.52-approximation factor, but still there was no tight instance example
provided.

Both the JMS and the MYZ algorithm are analyzed by modeling their local
behavior. For every star, i.e., one facility and a subset of clients, the solution is
proved to be locally not too expensive (see [JMS02] for details). Suppose that the
analyzed star has a facility i with opening cost f , that the distance between client j
and facility i is equal to dj , and that the JMS algorithm ends with clients’ budgets
αj , assigning client j to a facility at distance rj,j′ at the moment of first assignment
of client j′. Then the following LP, called a factor revealing LP, models this situation
while maximizing the “local” proportion of the cost of the computed solution to any
fractional solution cost.

max

∑k
j=1 αj

f +
∑k

j=1 dj

subject to αj ≤ αj+1 for all 1 ≤ j < k

rj,j+1 ≥ rj,j+2 ≥ . . . ≥ rj,k for all 1 ≤ j ≤ k

αj′ ≤ rj,j′ + dj + dj′ for all 1 ≤ j < j′ ≤ k
j−1
∑

j′=1

max(rj′,j − dj′ , 0) +

k∑

j′=j

max(αj − dj′ , 0) ≤ f for all 1 ≤ j ≤ k

f, dj , αj , rj,j′ ≥ 0 for all 1 ≤ j ≤ j′ ≤ k

2.2 The algorithm of Mahdian et al. is not optimal 25

For our analysis of the MYZ algorithm we define another mathematical program
and its optimal value as follows.

Definition 2.2.1 For every δ ∈ R+ and k ∈ N+, let z(δ, k) be defined as the the
value of an optimal solution to the following LP, later referred to as the model LP.

max
1
δ ·

∑k
j=1 αj + (1 − 1

δ) ·∑k
j=1 rj

1
δ · f +

∑k
j=1 dj

subject to αj ≤ αj+1 for all 1 ≤ j < k

αj′ ≤ rj + dj + dj′ for all 1 ≤ j < j′ ≤ k (2.6)
j−1
∑

j′=1

max(rj′ − dj′ , 0) +

k∑

j′=j

max(αj − dj′ , 0) ≤ f for all 1 ≤ j ≤ k (2.7)

f

δ
≥

k∑

j=1

max(rj − dj , 0) (2.8)

rj ≤ αj for all 1 ≤ j ≤ k (2.9)

f, dj , αj , rj ≥ 0 for all 1 ≤ j ≤ k

To incorporate scaling into the analysis, the variables of our model LP represent
parameters of a scaled instance, and the objective value represents the cost of the
scaled back solution.

In order to derive a lower bound on the approximation factor of the algorithm,
we add constraint (2.8). This constraint implies that the instance of the metric
UFL problem that we will read from the solution of our LP is such that the MYZ
algorithm does not open any facility during the augmentation phase.

One more difference between the two LP models is that the latter one uses rj

variables instead of the double-indexed rj,j′ variables used in the original factor re-
vealing LP of the JMS algorithm. This change may be interpreted as an assumption
that clients do not change facilities they are assigned to during the JMS phase of
the MYZ algorithm. This assumption did not affect the solution values obtained
from the model LP. Even if it would affect the optimum value, it would not matter
as we are computing a lower bound on the performance factor of the algorithm.

Lemma 2.2.2 For every δ ∈ R+ and every k ∈ N+, there exists an instance I of
the metric UFL problem with k clients and k + 1 facilities, such that the solution
computed by the MYZ algorithm for the instance I is z(δ, k) times more expensive
than the optimal solution to the instance I.

Proof: Consider the instance illustrated in Figure 2.1, where the variable values
form an optimal solution to the model LP. It contains k + 1 facilities and k clients.
Constraints (2.9) of the model LP imply that values (αj − rj)/δ are positive.

The optimal solution is to open the left facility with opening cost 1
δ · f , the

connection cost is then
∑k

j=1 dj , and the total cost of the optimal solution is the

26 Facility location

(α1 − r1)/δ

(α2 − r2)/δ

(α3 − r3)/δ

(αk − rk)/δ

f/δ

d1

d2

d3

dk

r1

r2

r3

rk

Figure 2.1: An instance of the metric UFL problem. Squares represent facilities,
circles represent clients. The numbers are facility opening costs and connection
costs. (Remaining connection costs are defined to be shortest paths’ costs in the
given graph)

denominator of the objective function in the model LP. The numerator is the cost of
the solution that opens all the other (right) facilities. It has connection cost

∑k
j=1 rj

and facility cost 1
δ · (

∑k
j=1 αj −

∑k
j=1 rj).

It remains to observe that the MYZ algorithm, when running on this instance,
may open exactly all the right facilities. Constraints (2.7) imply that whenever there
is enough budget offered to the left facility, there is a right facility with enough to
offer as well. Constraints (2.6) imply that whenever the budget of client j is high
enough to connect to an already opened facility, it also suffices to open another
facility with scaled cost (αj − rj). Additionally, constraint (2.8) implies that the
left facility is not opened during the scaling back and augmentation phase.

⊔⊓
In the above proof we say that the MYZ algorithm may have a z(δ, k) error,

but we may modify the instance, so that the MYZ algorithm would have to have
a z(δ, k)− ǫ error. In the analysis of the greedy augmentation we neglect the gain
we could possibly get from closing unused facilities, and indeed, for our example
closing facilities would solve the problem. However, we may easily construct an
instance out of many copies of the instance that we have just analyzed, such that
the MYZ algorithm has a z(δ, k) − ǫ error even if we allow the algorithm to close
unused facilities during the augmentation phase. Moreover, if we use a generalized
augmentation that is allowed to open some constant number of facilities at once,
there are still instances for which the modified MYZ algorithm has a z(δ, k)−ǫ error.

In the following we analyze how “bad” our instances of the metric UFL problem

2.2 The algorithm of Mahdian et al. is not optimal 27

k z(1.504, k)
2 1.335106383
5 1.441877216
10 1.466269191
50 1.489333800
100 1.492135015
200 1.493540895
300 1.494012828
500 1.494389666

Figure 2.2: Analysis of the approximation factor of the MYZ algorithm with δ =
1.504 on single star instances (k is the number of clients in the instance).

may be for the MYZ algorithm with δ = 1.504. The growth of the approximation
factor with the instance size is presented in Figure 2.2. The figure suggests that the
actual limit of the growth is somewhere between 1.495 and 1.50, which is essentially
below 1.52, but on the other hand, quite above 1.463.. .

In Figure 2.3, the dependence of our analysis on the value of the scaling factor
δ is presented. We may observe that z(δ, 50) has a local minimum at δ = 1.75 and
a local maximum at δ = 1.92. It would be interesting to understand why these two
values are so special. Since what we provide is a lower bound on the approximation
factor of the MYZ algorithm, we may conclude that for δ ≤ 2.3 it does not close the
gap with the inapproximability bound of 1.463.. . For larger values of δ our analysis
is inappropriate, because then the algorithm is dominated by greedy augmentation
and we did not model this precisely enough.

To conclude, our analysis of the algorithm of Mahdian at al. shows that the
approximation factor is not better than 1.494369. The difficulty growth with the
instance size is presented in figure 2.2. The figure suggests, that the actual limit of
the growth is somewhere between 1.495 and 1.50, which is essentially below 1.52,
but on the other hand, quite above (1.463..). As a consequence, the approximation
gap may not be closed just by improving the analysis of this algorithm.

The way Mahdian at al. have modified the JMS algorithm can be seen as a
method to make the algorithm also suitable for instaces dominated by connection
costs. In the next section, we give a new LP-rounding algorithm which can be seen
as an alternative solution to these instances. While JMS gives good approximation
for instances dominated by facility opening costs, the new algorithm is better when

28 Facility location

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
1.46

1.465

1.47

1.475

1.48

1.485

1.49

1.495

limit of approximation

scaling factor

lo
w

er
 b

ou
nd

 o
n

th
e

ap
pr

ox
im

at
io

n
fa

ct
or

Figure 2.3: Analysis of the approximation factor of the MYZ algorithm on single
star instances for different values of the scaling factor δ. (k = 50)

connection costs are critical. As a result the combination of these two algorithms
will give an improved approximation ratio.

2.3 A new greedy rounding algorithm

2.3.1 Outline

Here, we modify the (1 + 2/e)-approximation algorithm of Chudak [Chu98], see
also Chudak and Shmoys [CS03], to obtain a new (1.6774,1.3738)-approximation
algorithm for the UFL problem. Our linear programming (LP) rounding algorithm
is the first one that achieves an optimal bifactor approximation due to the matching
lower bound of (λf , 1 + 2e−λf) established by Jain et al. [JMS02]. In fact we obtain
an algorithm for each point (λf , 1+2e−λf) such that λf ≥ 1.6774, which means that
we have an optimal approximation algorithm for instances dominated by connection
cost (see Figure 2.4).

One could view our contribution as an improved analysis of a minor modifica-
tion of the algorithm by Sviridenko [Svi02], which also introduces filtering to the
algorithm of Chudak and Shmoys. The filtering process that is used both in our
algorithm and in the algorithm by Sviridenko is relatively easy to describe, but the
analysis of the impact of this technique on the quality of the obtained solution is
quite involved in each case. Therefore, we prefer to state our algorithm as an appli-

2.3 A new greedy rounding algorithm 29

Figure 2.4: Bifactor approximation picture. The gray area corresponds to the im-
provement due to our algorithm.

cation of the sparsening technique to the algorithm of Chudak and Shmoys, which
in our opinion is relatively easy do describe and analyze.

We start by observing that for a certain class of instances the analysis of the
algorithm of Chudak and Shmoys may be improved. We call these instances regular,
and for the other instances we propose a measure of their irregularity. The goal of the
sparsening technique is to explore the irregularity of instances that are potentially
tight for the original algorithm of Chudak and Shmoys. We cluster the given instance
in the same way as in the 1.58-approximation algorithm by Sviridenko [Svi02], but
we continue our algorithm in the spirit of Chudak and Shmoys’ algorithm, and we
use certain average distances to control the irregularities, which leads to an improved
bifactor approximation guarantee.

Our new algorithm may be combined with the (1.11, 1.7764)-approximation al-
gorithm of Jain et al. to obtain a 1.5-approximation algorithm for the UFL problem.
This is an improvement over the previously best known 1.52-approximation algo-
rithm of Mahdian et al., and it cuts of a 1/3 off the gap with the approximation
lower bound by Guha and Khuller [GK98].

In Section 2.3.2 we give a brief overview of the main ingredients of some known
approximation algorithms for UFL. In particular we state the LP relaxation of
UFL, and describe clustering in more details. Sparsening of the support graph of
the LP solution is discussed in Section 2.3.3, where we also prove a lemma that

30 Facility location

provides a bound on certain connection costs. Our bifactor algorithm together with
its analysis is presented in Section 2.3.4, and the 1.5-approximation algorithm is
stated in Section 2.3.5. In Section 2.3.6 we show that the new (1.6774, 1.3738)-
approximation algorithm may be used to improve the approximation ratio for the
3-level version of the UFL problem to 2.492. A randomized approach to clustering is
discussed in Section 2.3.7, and, finally, in Section 2.3.8 we present some concluding
remarks and open problems.

2.3.2 Preliminaries

In Section 2.1.3 we gave a brief overview of the concept of LP-rounding algo-
rithms for the metric UFL problem. We now need to dive into a somewhat more
detailed description.

Recall that these algorithms first solve the linear relaxation of a given integer pro-
gramming (IP) formulation of the problem, and then round the fractional solution
to produce an integer solution with a value not too much higher than the starting
fractional solution. Since the optimal fractional solution is at most as expensive as
an optimal integral solution, we obtain an estimation of the approximation factor.

IP formulation and relaxation

Recall the IP formulation (2.1-2.4) of the UFL problem.

min
∑

i∈F
fiyi +

∑

i∈F

∑

j∈C
cijxij

subject to
∑

i∈F
xij = 1, for all j ∈ C,

xij − yi ≤ 0, for all i ∈ F , j ∈ C, (2.3)

xij ≥ 0, yi ∈ {0, 1} for all i ∈ F , j ∈ C. (2.4)

A linear relaxation of this IP formulation is obtained by replacing the integrality
constraints (2.4) by the constraint

xij ≥ 0 for all i ∈ F , j ∈ C. (2.10)

Note, that yi ≥ 0 is implied by constraints (2.3) and (2.10). We do not explicitly
require yi ≤ 1. However, in any optimal fractional solution we have yi ≤ 1 assum-
ing fi > 0. In one of the intermediate fractional solutions that are considered in
the rounding procedure that we will describe in Section 2.3.3 the y variables may
potentially take values grater that 1.

The value of the solution to the above LP relaxation will serve as a lower bound
for the cost of the optimal solution. We will also make use of the following dual
formulation of this LP.

2.3 A new greedy rounding algorithm 31

max
∑

j∈C
vj

subject to
∑

j∈C
wij ≤ fi for all i ∈ F ,

vj − wij ≤ cij for all i ∈ F , j ∈ C,
wij ≥ 0 for all i ∈ F , j ∈ C .

Clustering

We now recall and describe in more detail the concept of clustering that was already
discussed in Section 2.1.3. Suppose we are given an optimal solution to the LP
relaxation of our problem. Consider the bipartite graph G = ((V ′, V ′′), E) with
vertices V ′ being the facilities and V ′′ the clients of the instance, and where there is
an edge between a facility i ∈ V ′ and a client j ∈ V ′′ if the corresponding variable
xij in the optimal solution to the LP relaxation is positive. We call G a support
graph of the LP solution. If two clients are both adjacent to the same facility in
graph G, we will say that they are neighbors in G.

The clustering in this graph is a partitioning of clients into clusters together with
a choice of a leading client for each of the clusters. This leading client is called a
cluster center. Additionally we require that no two cluster centers are neighbors in
the support graph. This property helps us to open one of the adjacent facilities for
each cluster center. For a picture of a cluster see Figure 2.5.

The algorithms by Shmoys et al., Chudak and Shmoys, and by Sviridenko all
use the following procedure to obtain the clustering: While not all the clients are
clustered, choose greedily a new cluster center j, and build a cluster from j and
all the neighbors of j that are not yet clustered. Obviously the outcome of this
procedure is a proper clustering. Moreover, it has a desired property that clients
are close to their cluster centers. Each of the mentioned LP-rounding algorithms
uses a different greedy criterion for choosing new cluster centers. In our algorithm
we will use the clustering with the greedy criterion of Sviridenko [Svi02]. Another
way of clustering is presented in Section 2.3.7.

2.3.3 Sparsening the graph of the fractional solution

In this section we consider a technique that we use to control the expected
connection cost of the obtained integer solution. Our technique is based on the
concept of filtering, introduced by Lin and Vitter [LV92], briefly discussed in see
Section 2.1.3. We will give an alternative analysis of the effect of filtering on a
fractional solution to the LP relaxation of the UFL problem. We will use the name
sparsening for the combination of filtering with our new analysis.

Suppose that, for a given UFL instance, we have solved its LP relaxation, and
that the optimal primal solution is (x∗, y∗) and the corresponding optimal dual

32 Facility location

open facility

cluster center
j j’

cluster

a path from client j to the facility
serving his cluster center j’

Figure 2.5: A cluster. If we make sure that at least one facility is open close to
a cluster center j′ , then any other client j from the cluster may use this facility.
Because the connection costs are assumed to be metric, the distance to this facility
is at most the length of the shortest path from j to the open facility.

solution is (v∗, w∗). Such a fractional solution has facility cost F ∗ =
∑

i∈F fiy
∗
i

and connection cost C∗ =
∑

i∈F ,j∈C cijx
∗
ij . Each client j has its share v∗j of the

total cost. This cost may again be divided into a client’s fractional connection cost
C∗

j =
∑

i∈F cijx
∗
ij , and his fractional facility cost F ∗

j = v∗j − C∗
j .

Motivation and intuition

The idea behind the sparsening technique is to make use of irregularities of an
instance if they occur. We call an instance locally regular around client j if the
facilities that serve j in the fractional solution (x∗, y∗) are all at the same distance
from j. An instance which is locally regular around each client is called regular. We
begin by observing that for such an instance the algorithm of Chudak and Shmoys
produces a solution whose cost is bounded by F ∗ + (1 + 2

e)C∗, which is an easy
consequence of the original analysis [CS03], but also follows from our analysis in
Section 2.3.4. Although this observation might not be very powerful itself, the value
F ∗ + (1 + 2

e)C∗ happens to be the intersection point between the bifactor approxi-
mation lower bound curve (λf , 1 + 2e−λf) and the y-axis in Figure 2.4. Moreover,
for regular instances we may apply the scaling + greedy augmentation technique
described in Section 2.1.3 to obtain an approximation algorithm corresponding to
any single point on this curve. In particular, we may simply use this construction to
get an optimal 1.463 . . .-approximation algorithm for regular instances of the metric
UFL problem. Note, that the proof of the matching hardness of approximation also

2.3 A new greedy rounding algorithm 33

uses instances that are essentially2 regular.
The instances that are not regular are called irregular and these are the instances

for which it is more difficult to create a feasible integer solution with good bounds on
the connection cost. In fractional solutions of irregular instances there exist clients
that are fractionally served by facilities at different distances. Our approach is to
divide facilities serving a client into two groups, namely close and distant facilities.
We will remove links to distant facilities before the clustering step, so that if there
are irregularities, then distances to cluster centers will decrease.

We measure the local irregularity of an instance by comparing the fractional
connection cost of a client to the average distance to his distant facilities. In the case
of a regular instance, the sparsening technique gives the same results as the scaling
+ greedy augmentation technique, but for irregular instances sparsening makes it
possible to construct an integer solution with a better bound on the connection
costs.

Details

We will start by modifying the optimal fractional LP-solution (x∗, y∗) by scaling
the y-variables by a constant γ > 1 to obtain a fractional solution (x∗, ỹ), where
ỹ = γ ·y∗. Now suppose that the values of the y-variables are fixed, but that we now
have the freedom to change the values of the x-variables in order to minimize the
connection cost. For each client j we compute the values of the corresponding x̃-
variables in the following way. We choose an ordering of facilities with nondecreasing
distances to client j. We connect client j to the first facilities in the ordering so that
among the facilities fractionally serving j, only the last one in the chosen ordering
may be opened by more than that it serves j. Formally, for any facilities i and i′

such that i′ is later in the ordering, if x̃ij < ỹi then x̃i′j = 0.
In the next step, we will eliminate the occurrences of situations where 0 < x̃ij <

ỹi. We do so by creating an equivalent instance of the UFL problem, where facility
i is split into two identical facilities i′ and i′′. In the new setting, the opening of
facility i′ is x̃ij and the opening of facility i′′ is ỹi − x̃ij . The values of the x̃-
variables are updated accordingly. By repeatedly applying this procedure we obtain
a so-called complete solution (x, y), i.e., a solution in which no pair i ∈ F , j ∈ C
exists such that 0 < xij < yi (see [Svi02][Lemma 1] for a more detailed argument).

In the new complete solution (x, y) we distinguish groups of facilities that are
especially important for a particular client. For a client j we say that a facility
i is one of its close facilities if it fractionally serves client j in (x, y); Cj = {i ∈
F|xij > 0} is the set of close facilities of j. If xij = 0, but facility i was serving
client j in solution (x∗, y∗), then we say, that i is a distant facility of client j;
Dj = {i ∈ F|xij = 0, x∗

ij > 0} is the set of distant facilities of j.

2These instances come from a reduction from the SET COVER problem. Clients represent
elements to be covered, and facilities represent subsets. The distance cij equals 1 if subset i con-
tains element j and it equals 3 otherwise. To formally argue about the regularity of such an instance
we would need to construct an optimal fractional solution using only facilities at distance 1.

34 Facility location

We will extensively use the average distances between single clients and groups
of facilities defined as follows.

Definition 2.3.1 For any client j ∈ C, and for any subset of facilities F ′ ⊂ F such
that

∑

i∈F ′ y∗
i > 0, let

d(j,F ′) =

∑

i∈F ′ cij · y∗
i

∑

i∈F ′ y∗
i

.

To interpret differences between certain average distances we will use the follow-
ing parameter.

Definition 2.3.2 Let

rγ(j) =

{
d(j,Dj)−d(j,Dj∪Cj)

F∗
j

for F ∗
j > 0

0 for F ∗
j = 0.

The value rγ(j) is a measure of the irregularity of the instance around client j.
It is the average distance to a distant facility minus the fractional connection cost
C∗

j (note, that C∗
j = d(j,Dj ∪ Cj) is the general average distance to both close and

distant facilities) divided by the fractional facility cost of a client j; or it is equal
to 0 if F ∗

j = 0. Since d(j,Dj) ≤ v∗j , C∗
j = d(j,Dj ∪ Cj) and C∗

j + F ∗
j = v∗j , rγ(j)

takes values between 0 and 1. rγ(j) = 0 means that client j is served in the solution
(x∗, y∗) by facilities that are all at the same distance. If rγ(j) = 1, then the facilities
are at different distances and the distant facilities are all so far from j that j is not
willing to contribute to their opening. In fact, for clients j with F ∗

j = 0 the value
of rγ(j) is not relevant for our analysis.

To get some more intuition for the values of F ∗
j and rγ(j), imagine that one

knows F ∗
j and C∗

j , but an adversary is constructing the fractional solution, and he
is deciding about distances to particular facilities fractionally serving client j. One
could interpret F ∗

j as a measure of freedom the adversary has in choosing those
distances. In this language, rγ(j) is a measure of what fraction of this freedom is
used to make distant facilities more distant than average facilities.

Consider yet another quantity, namely r′γ(j) = rγ(j) ∗ (γ− 1). Observe, that for
a client j with F ∗

j > 0 we have

r′γ(j) =
d(j,Dj ∪ Cj)− d(j, Cj)

F ∗
j

.

We may use rγ(j) and r′γ(j) to rewrite some distances from client j in the
following form (see Figure 2.6):

• the average distance to a close facility is

DC
av(j) = d(j, Cj) = C∗

j − r′γ(j) · F ∗
j ,

• the average distance to a distant facility is

DD
av(j) = d(j,Dj) = C∗

j + rγ(j) · F ∗
j ,

2.3 A new greedy rounding algorithm 35

10 distant
facilities

close facilities

distance

average distance to distant facilities

average distance to close facilities

1
γ

v∗j = C∗
j + F ∗

j

C∗
j + rγ(j) · F ∗

j

C∗
j

C∗
j − r′γ(j) · F ∗

j

Figure 2.6: Distances to facilities serving client j; the width of a rectangle corre-
sponding to facility i is equal to x∗

ij . The figure explains the meaning of rγ(j) and
r′γ(j).

• the maximal distance to a close facility is

DC
max(j) ≤ DD

av(j) = C∗
j + rγ(j) · F ∗

j .

In the following lemma we will prove an upper bound on the average distance
from client j to another group of facilities.

Lemma 2.3.3 Suppose γ < 2 and that clients j, j′ ∈ C are neighbors in (x, y), i.e.,
∃i ∈ F s.t. xij > 0 and xij′ > 0. Then, either Cj′ \ (Cj ∪Dj) = ∅ or

d(j, Cj′ \ (Cj ∪Dj)) ≤ DD
av(j) + DC

max(j′) + DC
av(j′).

Proof: Assume that Cj′ \ (Cj ∪Dj) is not empty, since otherwise we are done.

Case 1. Assume that the distance between j and j′ is at most DD
av(j) + DC

av(j′).
By a simple observation, that a maximum is larger that the average, we get

d(j′, Cj′ \ (Cj ∪ Dj)) ≤ DC
max(j′). (2.11)

36 Facility location

Combining the assumption with (2.11), we obtain

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DD
av(j) + DC

max(j′) + DC
av(j′) .

Case 2. Assume that the distance between j and j′ is longer than DD
av(j)+DC

av(j′).
Since d(j, Cj ∩ Cj′) ≤ DD

av(j), the assumption implies

d(j′, Cj ∩ Cj′) > DC
av(j′). (2.12)

Consider the following two sub-cases.

Case 2a. Assume that d(j′, Cj′ ∩Dj) ≥ DC
av(j′).

This assumption together with (2.12) gives

d(j′, Cj′ ∩ (Cj ∪ Dj)) ≥ DC
av(j′). (2.13)

Recall that DC
av(j′) = d(j′, Cj′). Hence (2.13) is equivalent to

d(j′, Cj′ \ (Cj ∪ Dj)) ≤ DC
av(j′). (2.14)

Since j and j′ are neighbors, the distance between them is at most DC
max(j) +

DC
max(j′). By the triangle inequality (2.5) we may add this distance to (2.14) and

get

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DD
av(j) + DC

max(j′) + DC
av(j′) .

Case 2b. In the remaining case we assume that d(j′, Cj′ ∩ Dj) < DC
av(j′).

This assumption may also be written as

d(j′, Cj′ ∩ Dj) = DC
av(j′)− z for some z > 0. (2.15)

Now we combine (2.15) with the assumption of Case 2 to get

d(j, Cj′ ∩ Dj) ≥ DD
av(j) + z. (2.16)

Let ŷ =
∑

i∈(Cj′∩Dj)
yi be the total fractional opening of facilities in Cj′ ∩Dj in the

modified fractional solution (x, y).

Observe that (2.16) together with the definition d(j,Dj) = DD
av(j) implies that

the set (Dj\Cj′) is not empty. Moreover it contains facilities whose opening variables
y sum up to γ − 1− ŷ > 0. More precisely, inequality (2.16) implies d(j,Dj \ Cj′) ≤
DD

av(j)− z · ŷ
γ−1−ŷ . Hence

DC
max(j) ≤ DD

av(j)− z · ŷ

γ − 1− ŷ
. (2.17)

2.3 A new greedy rounding algorithm 37

We combine (2.17) with the assumption of Case 2 to conclude that the minimal
distance from j′ to a facility in Cj′ ∩ Cj is at least DD

av(j) + DC
av(j′) −DC

max(j) ≥
DC

av(j′) + z · ŷ
γ−1−ŷ . Hence

d(j′, Cj′ ∩ Cj) ≥ DC
av(j′) + z · ŷ

γ − 1− ŷ
. (2.18)

Recall that, by definition, d(j′, Cj′) = DC
av(j′). Hence equality (2.15) may be written

as

d(j′, Cj′ \ Dj) = DC
av(j′) + z · ŷ

1− ŷ
. (2.19)

Since, by the assumption that γ < 2, we have ŷ
1−ŷ < ŷ

γ−1−ŷ , we may also write

d(j′, Cj′ \ Dj) < DC
av(j′) + z · ŷ

γ − 1− ŷ
. (2.20)

We may now combine (2.20) with (2.18) to get

d(j′, Cj′ \ (Dj ∪ Cj)) < DC
av(j′) + z · ŷ

γ − 1− ŷ
. (2.21)

Finally, we bound the distance form j to j′ by DC
max(j) + DC

max(j′) to get

d(j, Cj′ \ (Cj ∪ Dj)) ≤ DC
max(j) + DC

max(j′) + d(j′, Cj′ \ (Dj ∪ Cj))

≤ DD
av(j)− z · ŷ

γ−1−ŷ + DC
max(j′) + DC

av(j′) + z · ŷ
γ−1−ŷ

= DD
av(j) + DC

max(j′) + DD
av(j′) ,

where the second inequality is an application of (2.21) and (2.17). ⊔⊓

2.3.4 Our new algorithm

Consider the following algorithm A1(γ):

1. Solve the LP relaxation of the problem to obtain a solution (x∗, y∗).

2. Modify the fractional solution as described in Section 2.3.3 to obtain a com-
plete solution (x, y).

3. Compute a greedy clustering for the solution (x, y), choosing as cluster centers
unclustered clients minimizing DC

av(j) + DC
max(j).

4. For every cluster center j, open one of his close facilities randomly with prob-
abilities xij .

5. For each facility i that is not a close facility of any cluster center, open it
independently with probability yi.

6. Connect each client to an open facility that is closest to him.

38 Facility location

j
cluster center j’

close facilities of j

distant facilities of j

close facilities of j’

Figure 2.7: Facilities that client j may consider: his close facilities, distant facilities,
and close facilities of cluster center j′.

In the analysis of this algorithm we will use the following result:

Lemma 2.3.4 Given n independent events e1, e2, . . . , en that occur with probabili-
ties p1, p2, . . . , pn respectively, the event e1 ∪ e2 ∪ . . . ∪ en (i.e., at least one of ei)
occurs with probability at least 1 − 1

e
Pn

i=1
pi

, where e denotes the base of the natural

logarithm.

Let γ0 be defined as the only positive solution to the following equation.

1

e
+

1

eγ0
− (γ0 − 1) · (1− 1

e
+

1

eγ0
) = 0 (2.22)

An approximate value of this constant is γ0 ≈ 1.67736. As we will observe in
the proof of Theorem 2.3.5, equation (2.22) appears naturally in the analysis of
algorithm A1(γ).

Theorem 2.3.5 Algorithm A1(γ0) produces a solution with expected cost
E[cost(SOL)] ≤ γ0 · F ∗ + 1 + 2

eγ0
· C∗.

Proof: We start our analysis from observations valid for the arbitrary choice of
the scaling parameter γ > 1. Later, we also assume γ < 2. The last argument
requires γ = γ0.

The expected facility opening cost of the solution is
E[FSOL] =

∑

i∈F fiyi = γ ·∑i∈F fiy
∗
i = γ · F ∗.

To bound the expected connection cost we show that for each client j there is
an open facility within a certain distance with a certain probability. If j is a cluster
center, one of his close facilities is open and the expected distance to this open
facility is DC

av(j) = C∗
j − r′γ(j) · F ∗

j ≤ C∗
j .

If j is not a cluster center, he first considers his close facilities (see Figure 2.7).
If any of them is open, the expected distance to the closest open facility is at most

2.3 A new greedy rounding algorithm 39

DC
av(j). From Lemma 2.3.4, with probability pc ≥ (1− 1

e), at least one close facility
is open.

Suppose none of the close facilities of j is open, but at least one of his distant
facilities is open. Let pd denote the probability of this event. The expected distance
to the closest facility is then at most DD

av(j).
If neither any close nor any distant facility of client j is open, then j may connect

himself to the facility serving his cluster center j′. Again from Lemma 2.3.4, such
an event happens with probability ps ≤ 1

eγ . We will now use the fact that if γ < 2
then, by Lemma 2.3.3, the expected distance from j to the facility opened around
j′ is at most DD

av(j) + DC
max(j′) + DC

av(j′).
Finally, we combine the probabilities of particular cases with the bounds on the

expected connection cost for each of the cases to obtain the following estimate of
the expected total connection cost.

E[CSOL]≤∑

j∈C
(
pc ·DC

av(j) + pd ·DD
av(j) + ps · (DD

av(j) + DC
max(j′) + DC

av(j′))
)

≤∑

j∈C
(
(pc + ps) ·DC

av(j) + (pd + 2ps) ·DD
av(j)

)

=
∑

j∈C
(
(pc + ps) · (C∗

j − r′γ(j) · F ∗
j) + (pd + 2ps) · (C∗

j + rγ(j) · F ∗
j)

)

= ((pc + pd + ps) + 2ps) · C∗

+
∑

j∈C
(
(pc + ps) · (−rγ(j) · (γ − 1) · F ∗

j) + (pd + 2ps) · (rγ(j) · F ∗
j)

)

= (1 + 2ps) · C∗ +
∑

j∈C
(
F ∗

j · rγ(j) · (pd + 2ps − (γ − 1) · (pc + ps))
)

≤ (1 + 2
eγ) · C∗ +

∑

j∈C
(
F ∗

j · rγ(j) · (1
e + 1

eγ − (γ − 1) · (1− 1
e + 1

eγ))
)
.

In the above calculation we used the following properties. In the first in-
equality we explored the fact that cluster centers were chosen greedily, which im-
plies DC

max(j′) + DC
av(j′) ≤ DC

max(j) + DC
av(j). For the last inequality, we used

pd + 2ps = 1− pc + ps ≤ 1− (1− 1
e) + 1

eγ = 1
e + 1

eγ .
It remains to observe, that by setting γ = γ0 ≈ 1.67736 (see (2.22)) we

eliminate the last term in the connection cost estimate, and we obtain E[CSOL] ≤
(1 + 2

eγ0
) · C∗ ≤ 1.37374 · C∗. ⊔⊓

The algorithm A1(γ) was described as a procedure of rounding a particular
fractional solution to the LP relaxation of the problem. In the presented analysis we
compared the cost of the obtained solution with the cost of the starting fractional
solution. If we appropriately scale the cost function in the LP relaxation before
solving the relaxation, we easily obtain an algorithm with a bifactor approximation
guarantee in a stronger sense. Namely, we get a comparison of the produced solution
with any feasible solution to the LP relaxation of the problem, and therefore a
bifactor approximation algorithm in the sense of Definition 2.1.1. Such a stronger
guarantee is, however, not necessary to construct the 1.5-approximation algorithm
for the metric UFL problem, which is presented in the next section.

The algorithm A1(γ) with γ = 1 + ǫ (for a sufficiently small positive ǫ) is es-
sentially the algorithm of Chudak and Shmoys. Observe, that for regular instances,
namely those with rγ(j) = 0 for every client j, we do not need to set γ = γ0 to
eliminate the dependence of connection cost of the produced solution on the facil-

40 Facility location

Figure 2.8: The performance of our algorithm for different values of parameter
γ. The solid line corresponds to regular instances with rγ(j) = 0 for all j and it
coincides with the approximability lower bound curve. The dashed line corresponds
to instances with rγ(j) = 1 for all j. For a particular choice of γ we get a horizontal
segment connecting those two curves; for γ ≈ 1.67736 the segment becomes a single
point. Observe that for instances dominated by connection cost only a regular
instance may be tight for the lower bound.

ity opening cost of the fractional solution. Hence, for regular instances, we get a
(γ, 2

eγ)-approximation algorithm for each choice of γ > 1.

2.3.5 The 1.5-approximation algorithm

In this section we will combine our algorithm with an earlier algorithm of Jain
et al. to obtain a 1.5-approximation algorithm for the metric UFL problem.

In 2002 Jain, Mahdian and Saberi [JMS02] proposed a primal-dual approxima-
tion algorithm (the JMS algorithm). Using a dual fitting approach they showed
that it is a 1.61-approximation algorithm. Later Mahdian, Ye and Zhang [MYZ02;
MYZ06] derived the following result.

Lemma 2.3.6 ([MYZ02]) The cost of a solution produced by the JMS algorithm
is at most 1.11 × F ∗ + 1.7764× C∗, where F ∗ and C∗ are facility and connection
costs in an optimal solution to the linear relaxation of the problem.

Theorem 2.3.7 Consider the solutions obtained with the A1(γ0) and JMS algo-
rithms. The cheaper of them is expected to have a cost at most 1.5 times the cost of
the optimal fractional solution.

Proof: Consider an algorithm A2 which does the following. With probability
p = 0.313 runs the JMS algorithm and otherwise, with probability 1− p, runs the
A1(γ0) algorithm. Suppose that we are given an instance, and that F ∗ and C∗ are

2.3 A new greedy rounding algorithm 41

facility and connection costs in an optimal solution to the linear relaxation of this
instance. Consider the expected cost of the solution produced by algorithm A2 for
this instance.

E[cost] ≤ p · (1.11 · F ∗ + 1.7764 · C∗) + (1− p) · (1.67736 · F ∗ + 1.37374 · C∗)

= 1.4998 · F ∗ + 1.4998 · C∗

< 1.5 ∗ (F ∗ + C∗)

≤ 1.5 ∗OPT.

⊔⊓
Instead of the JMS algorithm we could take the algorithm of Mahdian et

al. [MYZ06] - the MYZ(δ) algorithm that scales the facility costs by δ, runs the
JMS algorithms, scales back the facility costs and finally runs the greedy augmen-
tation procedure. With the notation introduced in Section 2.1.3, the MYZ(δ) algo-
rithm is the Sδ(JMS) algorithm. The MYZ(1.504) algorithm was proven [MYZ06]
to be a 1.52-approximation algorithm for the metric UFL problem. We may
change the value of δ in the original analysis to observe that MYZ(1.1) is a
(1.2053,1.7058)-approximation algorithm. This algorithm combined with our A1(γ0)
(1.67736,1.37374)-approximation algorithm gives a 1.4991-approximation algorithm,
which is even better than just using JMS and A1(γ0), but it gets more complicated
and the additional improvement is tiny.

2.3.6 Multilevel facility location

In the k-level facility location problem the clients need to be connected to open
facilities on the first level, and each open facility except on the last, k-th level,
needs to be connected to an open facility on the next level. Aardal, Chudak, and
Shmoys [ACS99] gave a 3-approximation algorithm for the k-level problem with ar-
bitrary k. Ageev, Ye, and Zhang [AYZ03] proposed a reduction of a k-level problem
to a (k−1)-level and a 1-level problem, which results in a recursive algorithm. This
algorithm uses an approximation algorithm for the single level problem and has a
better approximation ratio, but only for instances with small k. Using our new
algorithm A1(γ0) instead of the JMS algorithm within this framework, improves
approximation for each level. In particular, in the limit as k tends to ∞, we get a
3.236-approximation which is the best possible for this construction.

By a slightly different method, Zhang [Zha06] obtained a 1.77-approximation
algorithm for the 2-level problem. For the 3-level and the 4-level version of the
problem he obtained 2.523-3 and 2.81-approximation algorithms, by reducing to a
problem with smaller number of levels. In the following we will modify the algorithm
by Zhang for the 3-level problem, and use the new (1.67736,1.37374)-approximation
algorithm for the single-level part, to obtain a 2.492-approximation, which improves
on the previously best known approximation by Zhang. Note, that for k > 4 the
best known approximation factor is still due to Aardal et al. [ACS99].

3This value deviates slightly from the value 2.51 given in the paper. The original argument
contained a minor calculation error.

42 Facility location

3-level facility location

We will now present the ingredients of the 2.492-approximation algorithm. We start
from an algorithm to solve the 2-level version.

Lemma 2.3.8 (Theorem 2 in [Zha06]) The 2-level UFL problem may be ap-
proximated by a factor of 1.77 + ǫ in polynomial time for any given constant ǫ > 0.

Zhang [Zha06] also considered a scaling technique analogous to the one described
in Section 2.1.3, but applicable to the 2-level version of the problem. An effect of
using this technique is analyzed in the following lemma.

Lemma 2.3.9 (Theorem 3 in [Zha06]) For any given ǫ > 0, if there is an (a, b)-
approximation algorithm for the 2-level UFL problem, then we can get an approxi-
mation algorithm for the 2-level UFL problem with performance guarantee

(

a +
e

e− 1
ln(∆) + ǫ, 1 +

b− 1

∆

)

for any ∆ ≥ 1.

He also uses the following reduction.

Lemma 2.3.10 (Lemma 7 in [Zha06]) Assume, that the 1-level and 2-level UFL
problems have approximation algorithms with factors (a, b) and (α, β), respectively,
then the 3-level UFL problem may be approximated by factors (max{a, a+α

2 },
3b+β

2).

Zhang [Zha06] observed, that the above three statements may be combined with
the MYZ algorithm to improve the approximation ratio for the 3-level UFL prob-
lem. In the following theorem we show that we may use our new (1.6774,1.3738)-
approximation algorithm for the 1-level UFL subproblem to get even better approx-
imation for the 3-level variant.

Theorem 2.3.11 There is a 2.492-approximation algorithm for the 3-level UFL
problem.

Proof: We first use the algorithm from Lemma 2.3.8, and the scaling technique
from Lemma 2.3.9, with ∆ = 1.57971, to obtain a (2.492, 1.48743)-approximation
algorithm for the 2-level UFL problem.

Then we use our (1.6774, 1.3737 . . .)-approximation algorithm for the 1-level UFL
problem with the scaling technique from Lemma 2.1.3, with γ = 2.25827, to obtain
a (2.492, 1.1655)-approximation algorithm for the 1-level UFL problem.

Finally, we use Lemma 2.3.10 to combine these two algorithms into a
(2.492, 2.492)-approximation algorithm for the 3-level UFL problem.

⊔⊓

2.3 A new greedy rounding algorithm 43

2.3.7 Universal randomized clustering procedure

In this section we discuss a different approach to clustering. We propose to mod-
ify the greedy clustering algorithm by choosing consecutive cluster centers randomly
with uniform distribution. The output of such a process is obviously random, but
we may still prove some statements about probabilities. A resulting clustering will
be denoted by a function g : C → C, which assigns to each client j the center of his
cluster j′ = g(j). The following lemma states that the clustering g obtained with
the randomized clustering procedure is expected to be “fair”.

Lemma 2.3.12 Given a graph G = (F ∪ C, E) and assuming that a clustering g
was obtained by the above described random process, for every two distinct clients j
and j′, the probability that g(j) = j′ is equal the probability that g(j′) = j.

Proof: Let C(G) denote the maximal (over the possible random choices of the
algorithm) number of clusters that can be obtained from G with the random cluster-
ing procedure. The proof will be by induction on C(G). Fix any j, j′ ∈ C such that
j is a neighbor of j′ in G (if they are not neighbors, neither g(j) = j′ nor g(j′) = j
can occur). Suppose C(G) = 1, then Pr[g(j) = j′] = Pr[g(j′) = j] = 1/|C|.

Let us now assume that C(G) > 1. There are two possibilities, either one of
j, j′ gets to the first cluster or they both avoid it. Consider the first case (the first
chosen cluster center is either j or j′ or one of their neighbors). If j (j′) is chosen
as a cluster center, then g(j′) = j (g(j) = j′). Since they are chosen with the same
probability, the contribution of the first case to the probability of g(j′) = j is equal
to the contribution to the probability of g(j) = j′. If neither of them gets chosen
as a cluster center but at least one gets into the new cluster, then neither g(j′) = j
nor g(j) = j′ is possible.

Now consider the second case (neither of j and j′ gets into the first cluster).
Consider the graph G′ obtained from G by removing the first cluster. The random
clustering proceeds like it has just started with the graph G′, but the maximal
number of possible clusters is smaller C(G′) ≤ C(G)−1. Therefore, by the inductive
hypothesis, in a random clustering of G′ the probability. that g(j′) = j is equal the
probability that g(j) = j′. Hence, the second case contribution to those probabilities
for the clustering of the original graph G is also equal. ⊔⊓

If g(j) = j′ in a clustering g of graph G we will say that client j′ offers a support
to client j. The main idea behind the clustering algorithms for the UFL problem
is that we may afford to serve each cluster center directly (because they are never
neighbors in G) and all the other clients are offered a support from their cluster
centers. A non-central client may either accept a support and connect himself
via his cluster center (that is what all non-central clients do in the algorithm of
Shmoys et al.), or he may try to get served locally, and if it fails, he will accept the
support (this is the way the Chudak and Shmoys’ algorithm works). In both those
algorithms the probability that an offer of support is accepted is estimated to be
constant. Therefore, we may modify those algorithms to use the random clustering
procedure and do the following analysis.

44 Facility location

For any two clients j and j′, the probability that j accepts a support of j′ is
equal to the probability that j′ accepts the support of j. Let i be a facility on a
shortest path from j to j′. When we compute the expected connection cost of a
client j, we observe that with certain probability p he accepts a support of j′. In
such a case he must pay for the route via i and j′ to the facility directly serving j′.
In this situation we will say that j is paying only for the part until facility i, and
the rest is paid by j′, but if j would be supporting j′ he would have to pay a part
of j′’s connection cost, which is the length of the path from i via j to the facility
serving j. We may think of it as each client having a bank account, and when he
accepts a support he makes a deposit, and when he offers a support and the support
is accepted, then he withdraws money to pay a part of the connection cost of the
supported client. From Lemma 2.3.12 we know that for a client j the probability
that he will earn on j′ is equal to the probability that he will lose on j′. Therefore,
if the deposed amount is equal to the withdrawal, the expected net cash flow is zero.

The above analysis shows that randomizing the clustering phase of the above
mentioned algorithms would not worsen their approximation ratios. Although it
does not make much sense to use a randomized algorithm if it has no better perfor-
mance guarantee, the random clustering has an advantage of allowing the analysis
to be more local and uniform.

2.3.8 Concluding remarks

With the 1.52-approximation algorithm of Mahdian et al. it was not clear to the
authors if a better analysis of the algorithm could close the gap with the approxi-
mation lower bound of 1.463 by Guha and Khuller (see Section 2.2). Similarly, we
now do not know if our new algorithm A1(γ) could be analyzed better to close the
gap. Construction of hard instances for our algorithm remains an open problem.

The scaling + greedy augmentation technique described in Section 2.1.3 enables
us to move the bifactor approximation guarantee of an algorithm along the approx-
imability lower bound of Jain et al. (see Figure 2.4) towards higher facility opening
costs. If we developed a technique to move the analysis in the opposite direction,
together with our new algorithm, it would imply closing the approximability gap
for the metric UFL problem. It seems that with such an approach we would have
to face the difficulty of analyzing an algorithm that closes some of the previously
opened facilities.

Chapter 3

Phylogenetic trees/networks

3.1 Preliminaries

Since the famous theory of evolution by Charles Darwin [Dar59] was announced
to the public in 1859, a great part of scientific activity has been devoted to exploring
its consequences and, in particular, to drawing a map of relationships between the
living species. Although, the theory of evolution itself is still, by many people, not
accepted as a valid description of the development of complicated living organisms,
it gives a great motivation to study many related problems. With the recent advance
in technology it is suddenly possible for biologists to operate with great amounts
of experimental data. The emerging interdisciplinary field of computational biology
concerns, among others, the algorithmic problems arrising in the analysis of such
large biological data sets.

One of the most commonly encountered problems in computational evolutionary
biology is to plausibly infer the evolutionary history of a set of species, often ab-
stractly modelled as a tree, using obtained biological data. Existing algorithms for
directly constructing such a tree do not scale well (in terms of running time) and this
has given rise to supertree methods: first infer trees for small subsets of the species
and then puzzle them together into a bigger tree such that in some well-defined
sense the information in the subset trees is preserved [BE04]. In the fundamental
case where the subsets in question each contain exactly three species - subsets of
two or fewer species cannot convey information - we speak of rooted triplet methods.

In recent years improved understanding of the complex mechanisms driving
evolution has stimulated interest in reconstructing evolutionary networks [Doo99;
KGDO05; Mar99; RL04]. Such structures are more general than trees and allow
us to capture the phenomenon of reticulate evolution i.e. non tree-like evolution
caused by processes such as hybrid speciation and horizontal gene transfer. A nat-
ural abstraction of reticulate evolution, used already in several papers, is to per-
mit recombination vertices, vertices with indegree greater than one. Informally a
level-k phylogenetic network is an evolutionary network in which each biconnected
component contains at most k such recombination vertices (for definitions see Sec-

45

46 Phylogenetic trees/networks

tion 3.2.1). Phylogenetic trees form the base: they are level-0 networks. The higher
the level of a network, the more intricate the pattern of reticulate evolution that it
can accommodate. Note that phylogenetic networks can also be useful for visualising
two or more competing hypotheses about tree-like evolution.

Various authors have already studied the problem of constructing phylogenetic
trees (and more generally networks) that are consistent with an input set of rooted
triplets. Aho et al. [ASSU81] showed a simple polynomial-time algorithm which,
given a set of rooted triplets, finds a phylogenetic tree consistent with all the triplets,
or shows that no such tree exists. For the equivalent problem in level-1 and level-2
networks the problem becomes NP-hard [vIKK+08; JNS00], although the problem
becomes polynomial-time solveable if the input triplets are dense i.e. if there is at
least one triplet in the input for each subset of three species [vIKK+08; JS06].

Several authors have considered algorithmic strategies of use when the algorithms
from [ASSU81] and [JS06] fail to find a tree or network. Ga̧sieniec et al. [GJLO99]
gave a polynomial-time algorithm that always finds a tree consistent with at least
1/3 of the (weighted) input triplets, and furthermore showed that 1/3 is best possible
when all possible triplets on n species (the full triplet set) are given as input. On
the negative side, [Bry97; Jan01; Wu04] showed that it is NP-hard to find a tree
consistent with a maximum number of input triplets. In the context of level-1
networks, [JNS00] gave a polynomial-time algorithm that produces a level-1 network
consistent with at least 5/12 ≈ 0.4166 of the input triplets. They also described an
upper-bound, which is a function of the number of distinct species n in the input, on
the percentage of input triplets that can be consistent with a level-1 network. As in
[GJLO99], this upper bound is tight in the sense that it is the best possible for the
full triplet set on n species. They computed a value of n for which their upper bound
equals approximately 0.4883, showing that in general no better fraction is possible.
The apparent convergence of this bound from above to 0.4880... begs the question,
however, whether a fraction better than 5/12 is possible for level-1 networks, and
whether the full triplet set is in general always the worst-case scenario for such
fractions.

In Section 3.2 we answer these questions in the affirmative, and in fact we give
a much stronger result. In particular, we develop a probabilistic argument that (as
far as such fractions are concerned) the full triplet set is indeed always the worst
possible case, irrespective of the type of network being studied (Proposition 3.2.3,
Corollary 3.2.4). Furthermore, by using a generic, derandomized polynomial-time
(re)labeling procedure, we can convert a network N that achieves a fraction p′ for
the full triplet set into an isomorphic network N ′(T) that achieves a fraction ≥ p′

for a given input triplet set T (Theorem 3.2.5). In this way we can easily use the
full triplet set to generate, for any network structure, a lower bound on the fraction
that can be achieved for arbitrary triplet sets within such a network structure. The
derandomization we give is fully general (with a highly optimized running time) and
leads immediately to a simple extension of the 1/3 result from [GJLO99]. For level-
1 networks we use the derandomization to give a polynomial-time algorithm that
achieves a fraction exactly equal to the level-1 upper-bound identified in [JNS00],

3.1 Preliminaries 47

and which is thus worst-case optimal for level-1 networks. We formally prove that
this achieves a fraction of at least 0.48 for all n. Moreover, we demonstrate the
flexibility of our technique by proving that for level-2 networks (see [vIKK+08]) we
can, for any triplet set T , find in polynomial time a level-2 network consistent with
at least a fraction 0.61 of the triplets in T (Theorem 3.2.13).

We emphasize that for the above mentioned results we are optimizing (and thus
defining worst-case optimality) with respect to |T |, the number of triplets in the
input, not Opt(T), the size of the optimal solution for that specific T . The latter
formulation we call the MAX variant of the problem. The fact that Opt(T) is always
bounded above by |T | implies that an algorithm that obtains a fraction p′ of the
input T is trivially also a p′-approximation for the corresponding MAX problem.
Better approximation factors for the MAX problem might, however, be possible.
We discuss this further in Section 3.2.7.

The results are given in terms of unweighted triplet sets. A natural extension,
especially in phylogenetics, is to attach a weight to each triplet t ∈ T i.e. a value
w(t) ∈ Q≥0 denoting the relative importance of (or confidence in) t. In this weighted
version of the problem fractions are defined relative to the total weight of T (defined
as the sum of the weights of all triplets in T), not to |T |. It is easy to verify that
all the results in this article also hold for the weighted version of the problem.

The above mentioned results achieve the best possible approximation guarantees
against the trivial upper bound for a number of variants of the triplet consistency
problem. A natural question is whether a nontrivial upper bound in some restricted
setting exists. We address this question is Section 3.3, in which we also consider the
problem of finding an optimal caterpillar - a very restricted tree. This leads to a
number of partial results, including a reduction from the MAX SUBDAG problem,
which suggest that approximation ratios better than 1/2 will be very difficult to
obtain.

Finally, in Section 3.4 we study a related problem of comparing two leaf-labelled
trees, assuming the sets of labels are equal. This problem naturally appears in the
situation when two different models of evolution for a given set of species are con-
sidered. The algorithms we study do not calculate any distance measure. Instead,
they suggest a way of drawing given trees in a plane in order to display the struc-
tural differences of the considered trees. We consider the following computational
problem. A binary tanglegram is a pair 〈S, T 〉 of binary trees whose leaf sets are in
one-to-one correspondence; matching leaves are connected by inter-tree edges. We
ask for a drawing in which both trees are drawn with no edge crossing and such
that the inter-tree edges have as few crossings as possible. It is known that finding
a drawing with the minimum number of crossings is NP-hard and that the prob-
lem is fixed-parameter tractable with respect to that number. We show that the
problem is hard even if both trees are complete binary trees. For this case we give
an O(n3)-time 2-approximation and a new and simple fixed-parameter algorithm.
We prove that under the Unique Games Conjecture there is no constant-factor ap-

48 Phylogenetic trees/networks

proximation for general binary trees. We show that the maximization version of the
problem for general binary trees can be reduced to a version of MaxCut for which
the algorithm of Goemans and Williamson yields a 0.878-approximation. We also
did an experimental study to evaluate our 2-approximation.

3.2 Constructing networks consistent with big fraction of
triplets

3.2.1 Definitions

A phylogenetic network (network for short) N on species set X is defined as a
pair (N, γ) where N is the network topology (topology for short) and γ is a labeling
of the topology. The topology is a directed acyclic graph in which exactly one vertex
has indegree 0 and outdegree 2 (the root) and all other vertices have either inde-
gree 1 and outdegree 2 (split vertices), indegree 2 and outdegree 1 (recombination
vertices) or indegree 1 and outdegree 0 (leaves). A labeling is a bijective mapping
from the leaf set of N (denoted LN) to X . Let n = |X | = |LN |.

A directed acyclic graph is connected (also called “weakly connected”) if there is an
undirected path between any two vertices and biconnected if it contains no vertex
whose removal disconnects the graph. A biconnected component of a network is a
maximal biconnected subgraph.

Definition 3.2.1 A network is said to be a level-k network if each biconnected
component contains at most k ∈ N recombination vertices.

We define phylogenetic trees to be the class of level-0 networks.
The unique rooted triplet (triplet for short) on a species set {x, y, z} ⊆ X in

which the lowest common ancestor of x and y is a proper descendant of the lowest
common ancestor of x and z is denoted by xy|z (which is identical to yx|z, see
Figure 3.1). For any set T of triplets, define X(T) as the union of the species sets
of all triplets in T .

Definition 3.2.2 A triplet xy|z is consistent with a network N (interchangeably:
N is consistent with xy|z) if N contains a subdivision of xy|z, i.e., if N contains
vertices u 6= v and pairwise internally vertex-disjoint paths u → x, u → y, v → u
and v → z1.

By extension, a set of triplets T is consistent with a network N (interchangeably: N
is consistent with T) iff, for all t ∈ T , t is consistent with N . Checking consistency
can be done in polynomial time, see Lemmas 3.2.7 and 3.2.8.

1Where it is clear from the context, as in this case, we may refer to a leaf by the species that
it is mapped to.

3.2 Constructing networks consistent with big fraction of triplets 49

Figure 3.1: One of the three possible triplets on the set of species {x, y, z}. Note
that, as with all figures in this article, all arcs are assumed to be directed downwards,
away from the root.

3.2.2 Labeling a network topology

Suppose we are given a topology N with n leaves, and a set T of triplets where
LN = {l1, l2, . . . , ln} and X = X(T) = {x1, x2, . . . , xn}. The specific goal of this
section is to create a labeling γ such that the number of triplets from T consistent
with (N, γ) is maximized.

Let f(N, γ, T) denote the fraction of T that is consistent with (N, γ).
Consider the special set T1(n), the full triplet set, of all the possible 3

(
n
3

)
triplets

with leaves labelled from {x1, x2, . . . , xn}. Observe that for this triplet set the
number of triplets consistent with a phylogenetic network (N, γ) does not depend
on the labeling γ. We may thus define #N = f(N, γ, T1(n)) = f(N, T1(n)) by
considering any arbitrary, fixed labeling γ. (Note that #N = 1/3 if N is a tree
topology.)

We will argue that the triplet set T1(n) is the worst-case input for maximizing
f(N, γ, T) for any fixed topology N on n leaves. In particular we prove the following:

Proposition 3.2.3 For any topology N with n leaves and any set of triplets T ,
if the labeling γ is chosen uniformly at random, then the quantity f(N, γ, T) is a
random variable with expected value E(f(N, γ, T)) = #N .

Proof: Consider first the full triplet set T1(n) = {t1, t2, . . . , t3(n
3)
} and an arbitrary

fixed labeling γ0. By labeling N we fix the position of each of the triplets in N .
Formally, a position of a triplet t = xy|z (with respect to γ0) is a triplet p = γ−1

0 (t) =
γ−1
0 (x)γ−1

0 (y)|γ−1
0 (z) on the leaves of N . We may list possible positions for a triplet

in N as those corresponding to t1, t2, . . . , t3(n

3)
in (N, γ0). Since a #N fraction of

t1, t2, . . . , t3(n

3)
is consistent with (N, γ0), a #N fraction of these positions makes

the triplet consistent. Now consider a single triplet t ∈ T and a labeling γ that is
chosen randomly from the set Γ of n! possible bijections from LN to X . Observe,
that for each ti ∈ T1(n), exactly 2 · (n − 3)! labelings γ ∈ Γ make triplet t have
the same position in (N, γ) as ti has in (N, γ0) (the factor of 2 comes from the
fact that we think of xy|z and yx|z as being the same triplet). Any single labeling
occurs with probability 1

n! , hence triplet t takes any single position with probability
2·(n−3)!

n! = 1

3·(n

3)
.

Since for an arbitrary t ∈ T each of the 3·
(
n
3

)
positions have the same probability

50 Phylogenetic trees/networks

and #N of them make t consistent, the probability of t being consistent with (N, γ)
is #N . The expectation is thus that a fraction #N of the triplets in T are consistent
with (N, γ). ⊔⊓

From the expected value of a random variable we may conclude the existence of
a realization that attains at least this value.

Corollary 3.2.4 For any topology N and any set of triplets T there exists a labeling
γ0 such that f(N, γ0, T) ≥ #N .

We may deterministically find such a γ0 by derandomizing the argument in a
greedy fashion, using the method of conditional expectation (see e.g. [MR95]). In
particular, we will show the following.

Theorem 3.2.5 For any topology N and any triplet set T , a labeling γ0 such that
f(N, γ0, T) ≥ #N can be found in time O(m3 + n|T |), where m and n are the
numbers of vertices and leaves of N .

We use standard arguments from conditional expectation to prove that the so-
lution is of the desired quality. It is somewhat more sophisticated to optimize the
running time of this derandomization procedure. We therefore dedicate the following
subsection to the proof of Theorem 3.2.5.

3.2.3 An optimized derandomization procedure

We start with a sketch of the derandomization procedure.

1. Γ← set of all possible labelings.

2. while there is a leaf l whose label is not yet fixed, do:

• for every species x that is not yet used

– let Γx be the set of labelings from Γ where l is labeled by x

– compute E(f(N, γx, T)), where γx is chosen randomly from Γx

• Γ← Γx s.t. x = argmaxxE(f(N, γx, T))

3. return γ0 ← the only element of Γ.

The following lemma shows that the solution produced is of the desired quality.

Lemma 3.2.6 f(N, γ0, T) ≥ #N .

Proof: By Proposition 3.2.3 the initial random labeling γ has the property
E(f(N, γ, T)) = #N . It remains to show that this expectation is not decreasing
when labels of leaves get fixed during the algorithm. Consider a single update
Γ ← Γx of the range of the random labeling. By the choice of the leaf l to get a
fixed label, we choose a partition of Γ into blocks Γx. The expectation E(f(N, γ, T))
is an average of f(N, γ, T) over Γ, and at least one of the blocks Γx of the partition
has this average at least as big as the total average. Hence, by the choice of Γx with
the highest expectation of f(N, γx, T), we get E(f(N, γx, T)) ≥ E(f(N, γ, T)). ⊔⊓

3.2 Constructing networks consistent with big fraction of triplets 51

We will now propose an efficient implementation of the derandomization proce-
dure. Since the procedure takes a topology N as an input, we need to express the
running time of this procedure in terms of the size of N . We will use m = |V (N)|
for the number of vertices of N , and n for the number of leaves.

We will need a generalized definition of consistency. In Definition 3.2.2 it is
assumed that x, y and z are leaves of the network N . In the following we will
use a predicate consistent(x, y, z) defined on vertices of N , which coincides with
Definition 3.2.2 when x, y and z are leaves. The predicate consistent(x, y, z) is
defined to be true if N contains vertices u 6= v and pairwise internally vertex-
disjoint paths u→ x, u→ y, v → u and v → z; paths are allowed to be of length 0
(e.g. u = x), but vertices x, y and z need to be pairwise different. We begin with a
consistency checking algorithm.

Lemma 3.2.7 Given a network N with m vertices, we can preprocess it in time
O(m3) so that given any three vertices x, y, z we can check whether xy|z is consistent
with N in time O(1).

Proof: Assume that vertices of N are numbered according to a topological order,
so that whenever (u, v) is an edge, u < v. Define join(x, z) to be the predicate
stating that N contains t 6= x and internally vertex-disjoint paths t → x and
t → z. It can be verified in linear time, for example by checking if there is a path
r → z (where r is the root) after removing x from the network. Observe that
consistent(x, y, z) can be expressed in terms of join and consistent(x′, y′, z′) where
max(x′, y′, z′) < max(x, y, z) as follows:

1. x, y < z. Then consistent(x, y, z) holds iff for some z′ 6= x, y (z′, z) is an edge
and consistent(x, y, z′) holds.

2. x, z < y. Then consistent(x, y, z) holds iff (x, y) is an edge and join(x, z)
holds or for some y′ 6= x, z (y′, y) is an edge and consistent(x, y′, z) holds.

3. y, z < x. Then consistent(x, y, z) holds iff (y, x) is an edge and join(y, z)
holds or for some x′ 6= y, z (x′, x) is an edge and consistent(x′, y, z) holds.

So, determining all consistent triplets can be done by evaluating all predicates
consistent(x, y, z). The number of operations we have to perform for each x, y, z
is not greater than sum of indegrees of those vertices which makes the overall
complexity O(m3 + m2|E(N)|) = O(m3). ⊔⊓

Although we do not use this result any further, we note that the above lemma
can be strengthened to obtain the following.

Lemma 3.2.8 Given a level-k network N , we can preprocess it in time O(m+mk2)
so that given any three vertices x, y, z we can check whether xy|z is consistent with
N in time O(1).

52 Phylogenetic trees/networks

z′

D

A B

C
z

x y

x′ y′

Figure 3.2: The case LCA(A, B) = LCA(A, B, C) from the proof of Lemma 3.2.8.

Proof: We begin with a definition and two claims. A chain is a sequence of vertices
v0 → v1 → . . . vk+1 such that both in and out degrees of v1, . . . , vk are all equal to
1. Now, consider an arbitrary biconnected component in N . We claim that, if each
chain within the component is replaced by an edge, the transformed component
contains at most max(2, 3k) vertices. This is trivially true for the biconnected
component consisting of only a single edge. To see that it is more generally true,
note that the transformed component contains at most k recombination vertices and
that all other vertices have outdegree 2 and indegree at most 1. Each such non-
recombination vertex creates at least one new path that eventually has to terminate
in a recombination vertex, and a recombination vertex can terminate at most two
paths. So there are at most 2k non-recombination vertices, and the claim follows.

From now on, biconnected component (or simply component) refers to a bicon-
nected component containing more than one edge. We claim that all biconnected
components within N are vertex-disjoint. To see why this is true, note that each
vertex in such a component must have degree at least 2. The value of indegree plus
outdegree of all vertices in N is at most 3, so they cannot be a part of more than
one such component.

The above reasoning shows that we could imagine the network as a rooted tree
T in which each vertex corresponds to some bigger component that has relatively
simple structure: contracting all chains in it gives us a graph of size O(k).

First we focus on the case when x, y, z lie in one biconnected component. The
obvious solution is to simply preprocess such queries for each triple of vertices from
one biconnected component. This does not give us the desired complexity yet: while
each component is small after contracting chains, it might originally contain as many
as Ω(m) vertices. We may overcome this difficulty by observing that if some chain
consist of more than 3 inner vertices, we can replace it by a chain containing exactly
3 of them. Then we preprocess the resulting graph using the O(|V |3) algorithm from
Lemma 3.2.7 (observe that |V | = O(k)). Given a query concerning consistency of

3.2 Constructing networks consistent with big fraction of triplets 53

some xy|z we may have to replace some of x, y, z with other vertices lying on the
shortened chains, which can be easily done in time O(1). The whole preprocessing
takes time

∑

i O(k3
i) where all ki = O(k) and

∑

i ki = O(m), giving us the desired
complexity.

Now we can solve the general case. Let A, B, C be biconnected components such
that x ∈ A, y ∈ B and z ∈ C. We can preprocess T in linear time so that given
its two vertices, we can find their lowest common ancestor (LCA) in time O(1)
[BFC00]. (This is already sufficient for the case k = 0 and contributes the m term
in the running time.) If xy|z is consistent there are only two possible situations:

1. LCA(A, B, C) is a proper ancestor of LCA(A, B). This is easy to detect.

2. LCA(A, B) = LCA(A, B, C). Let D = LCA(A, B). We can find x′, y′, z′ -
the entrance points within D (see Figure 3.2) - in time O(1). It can be done by
either using level ancestor queries or modifying the LCA algorithm [BFC04].
We can then check whether x′y′|z′ is consistent using the above preprocessing.

⊔⊓

Armed with Lemma 3.2.7 (or Lemma 3.2.8) we are now ready to proceed with the
derandomization. Assume that we assign labels to leaves in order of their position
in the topological ordering of Lemma 3.2.7; for simplicity let us refer to the leaves
as 1, 2, . . . , n. The most time-consuming part of the algorithm is calculating the
probability that a given triplet t = ab|c is consistent with a random labeling having
already specified the labels of leaves 1, 2, . . . , k − 1. Let γ be this partial labeling.
We need to consider six cases:

1. Labels a, b, c have not been assigned yet. The probability is then simply the
number of consistent triplets xy|z with k ≤ x, y, z divided by 3

(
n−k+1

3

)
.

2. γ(x) = a but both b and c have not been assigned yet. The probability is the
number of k ≤ y, z such that xy|z is a consistent triplet divided by 2

(
n−k+1

2

)
.

3. γ(z) = c but both a and b have not been assigned yet. The probability is the
number of k ≤ x < y such that xy|z is a consistent triplet divided by

(
n−k+1

2

)
.

4. γ(x) = a, γ(y) = b but c has not been assigned yet. The probability is the
number of k ≤ z such that xy|z is a consistent triplet divided by n− k + 1.

5. γ(x) = a, γ(z) = c but b has not been assigned yet. The probability is the
number of k ≤ y such that xy|z is a consistent triplet divided by n− k + 1.

6. γ(x) = a, γ(y) = b, γ(z) = c. The probability is 0 or 1, depending on whether
xy|z is consistent or not.

54 Phylogenetic trees/networks

In the first five cases, we can do rather better than simply counting all the xy|z
each time from scratch. Define:

count3(k) := #(x,y,z) such that k ≤ x, y, z and x < y and consistent(x, y, z)

count2x(k, x) := #(y,z) such that k ≤ y, z and consistent(x, y, z)

count2z(k, z) := #(x,y) such that k ≤ x < y and consistent(x, y, z)

count1xy(k, x, y) := #z such that k ≤ z and consistent(x, y, z)

count1xz(k, x, z) := #y such that k ≤ y and consistent(x, y, z)

It is easy to see that we can compute all the above values in time O(m3) as follows:

count3(k) = count3(k + 1) + count2x(k + 1, k) + count2z(k + 1, k)

count2x(k, x) = count2x(k + 1, x) + count1xz(k + 1, x, k) + count1xy(k + 1, x, k)

count2z(k, z) = count2z(k + 1, z) + count1xz(k + 1, k, z)

count1xy(k, x, y) = count1xy(k + 1, x, y) + consistent(x, y, k)

count1xz(k, x, z) = count1xz(k + 1, x, z) + consistent(x, k, z)

Having preprocessed the above values, we can calculate each probability in time
O(1), giving us a total running time of O(m3 + n2|T |). It turns out, however, that
we can do slightly better. As it currently stands, for each leaf and each unused label
we calculate the expected number of consistent triplets after assigning this label to
this leaf separately. To further improve the complexity of the running time we can
try to do all such calculations at once (for a fixed leaf): for each triplet and for
each unused label we calculate the probability that this triplet is consistent after we
use this label. (In other words, we switch from a leaf-label-triplet loop nesting to
leaf-triplet-label). Then it turns out that those probabilities are the same for almost
all unused labels. More formally:

Lemma 3.2.9 Let Γ be the set of labelings that assign γ(i) to leaf i for each i =
1, 2, . . . , k − 1 and Γx be the subset of Γ that assign x to leaf k. We can find x for
which E(f(N, γx, T)) is maximum in time O(|T |) assuming the above preprocessing.

Proof: Let ex = E(f(N, γx, T)). Each such ex is a sum of probabilities corre-
sponding to the elements of T . We will start with all ex equal 0 and consider triplets
one by one. For each triplet t we will increase the appropriate values of ex by the
corresponding probabilities. Again we should consider six cases depending on how
t = ab|c looks like. Let A = 1

3(n−k+1

3)
, B = 1

(n−k+1

2)
and C = 1

n−k+1 :

1. Labels a, b, c have not been assigned yet. We should increase ea and eb

by count2x(k + 1, k)B
2 , ec by count2z(k + 1, k)B and the remaining el by

count3(k + 1)A.

2. γ(x) = a but both b and c have not been assigned yet. We should increase eb

by count1xy(k + 1, a, k)C, ec by count1xz(k + 1, x, k)C and the remaining el

by count2x(k + 1, x)B
2 .

3.2 Constructing networks consistent with big fraction of triplets 55

3. γ(z) = c but both a and b have not been assigned yet. We should increase ea

and eb by count1xz(k + 1, k, z)C and the remaining el by count2z(k, z)B.

4. γ(x) = a, γ(y) = b but c has not been assigned yet. We should increase ec by
consistent(x, y, k) and the remaining el by count1xy(k + 1, x, y)C.

5. γ(x) = a, γ(z) = c but b has not been assigned yet. We should increase eb by
consistent(x, k, z) and the remaining el by count1xz(k + 1, x, z)C.

6. γ(x) = a, γ(y) = b, γ(z) = c. We should increase all el by consistent(x, y, z).

The naive implementation of the above procedure would require time O(|T |n).
We can improve it by observing that we are interested only in the relative increment
of the different ex, not in their actual values. So, instead of increasing all el with
l /∈ S by some δ (for some S ⊆ X), we can decrease all el with l ∈ S by this δ. Then
processing each triplet takes time O(1) as we only have to change at most 3 values
of ex.

⊔⊓
We may now compose these lemmas into the following.

Proof: [of Theorem 3.2.5] Consider the procedure sketched at the beginning of the
subsection and implemented according to the above lemmas. By Lemma 3.2.6, it
produces good labelings. By Lemma 3.2.7 and n applications of Lemma 3.2.9, it
can be implemented to run in O(m3 + n|T |) time. ⊔⊓

3.2.4 Consequences

Theorem 3.2.5 gives a new perspective on the problem of approximately con-
structing phylogenetic networks. From the algorithm of Ga̧sieniec et al. [GJLO99]
we can always construct a phylogenetic tree that is consistent with at least 1/3 of the
the input triplets. In fact, the trees constructed by this algorithm are very specific
- they are always caterpillars. (A caterpillar is a phylogenetic tree such that, after
removal of leaves, only a directed path remains.) Theorem 3.2.5 implies that not
only caterpillars, but all possible tree topologies have the property, that given any
set of triplets we may find in polynomial time a proper assignment of species into
leaves with the guarantee that the resulting phylogenetic tree is consistent with at
least a third of the input triplets.

The generality of Theorem 3.2.5 makes it meaningful not only for trees, but also
for any other subclass of phylogenetic networks (e.g. for level-k networks). Let
us assume that we have focused our attention on a certain subclass of networks.
Consider the task of designing an algorithm that for a given triplet set constructs
a network from the subclass consistent with at least a certain fraction of the given
triplets. A worst-case approach as described in this section will never give us a
guarantee better than the maximum value of #N ranging over all topologies N
in the subclass. Therefore, if we intend to obtain networks consistent with a big
fraction of triplets and if our criteria is to maximize this fraction in the worst case,

56 Phylogenetic trees/networks

then our task reduces to finding topologies within the subclass that are good for
the full triplet set. Theorem 3.2.5 potentially has a further use as a mechanism
for comparing the quality of phylogenetic networks generated by other methods,
because it provides lower bounds for the fraction of T that a given topology and/or
subclass of topologies can be consistent with. (Although a fundamental problem in
phylogenetics [BSS04] [CRV07] [CMM05] [NSW+03] [LR04], the science of network
comparison is still very much in its infancy. In Section 3.4 we study a different
approach to comparing networks. Notice that, the graphical comparison methods
we consider are applicable mainly for the problem of comparing phylogenetic trees.)

For level-0 networks (i.e. phylogenetic trees) the problem of finding optimal
topologies for the full triplet set is simple: any tree is consistent with exactly 1/3
of the full triplet set. For level-1 phylogenetic networks a topology that is optimal
for the full triplet set was constructed in [JNS00]. We may use this network and
Theorem 3.2.5 to obtain an algorithm that works for any triplet set and creates a
network that is consistent with the biggest possible fraction of triplets in the worst
case (see Section 3.2.5 for more details). For level-2 networks we do not yet know
the optimal structure of a topology for the full triplet set, but we will show in Sec-
tion 3.2.6 that we can construct a network that has a guarantee of being consistent
with at least a fraction 0.61 of the input triplets.

3.2.5 Application to level-1 phylogenetic networks

In [JNS00] it was shown how to construct a special level-1 topology C(n), which
we call a galled caterpillar2 , such that #C(n) ≥ #N for all level-1 topologies N
on n leaves. The existence of C(n), which has a highly regular structure, was
proven by showing that any other topology N can be transformed into C(n) by local
rearrangements that never decrease the number of triplets the associated network
is consistent with. It was shown that #C(n) = S(n)/3

(
n
3

)
, where S(0) = S(1) =

S(2) = 0 and, for n > 2,

S(n) = max1≤a≤n

{(
a

3

)

+ 2

(
a

2

)

(n− a) + a

(
n− a

2

)

+ S(n− a)

}

. (3.1)

In Figure 3.3 an example of a galled caterpillar is shown. All galled caterpillars
on n ≥ 3 leaves consist of one or more galls chained together in linear fashion and
terminating in a tail of one or two leaves. Observe that the recursive structure of
C(n) mirrors directly the recursive definition of S(n) in the sense that the value of
a chosen at recursion level k is equal to the number of leaves found in the kth gall,
counting downwards from the root. In the definition of C(n) it is not specified how
the a leaves at a given recursion level are distributed within the gall, but it is easy
to verify that placing them all on one side of the gall (as shown in the figure) is
sufficient.

2In [JNS00] this is called a caterpillar network.

3.2 Constructing networks consistent with big fraction of triplets 57

C(2)

C(6)

C(17)

Figure 3.3: This is galled caterpillar C(17). It contains two galls and ends with a
tail of two leaves. C(17) contains 11 leaves in the top gall because Equation 3.1 is
maximized for a = 11.

Lemma 3.2.10 Let T be a set of input triplets labelled by n species. Then, in time
O(n3+n|T |), it is possible to construct a level-1 network N , isomorphic to the galled
caterpillar C(n), consistent with at least a fraction S(n)/3

(
n
3

)
of T .

Proof: First we construct the level-1 topology C(n). Using dynamic programming
to compute all values of S(n′) for 0 ≤ n′ ≤ n this can be done in time O(n2). Note
that C(n) contains in total O(n) vertices. It remains only to choose an appropriate
labeling of the leaves of C(n), and this is achieved by substituting C(n) for N in
Theorem 3.2.5; this dominates the running time. ⊔⊓

Note that, because C(n) achieves the best possible fraction for the input T1(n),
the fraction achieved by Lemma 3.2.10 is worst-case optimal for all n. Empirical ex-
periments suggest that the function S(n)/3

(
n
3

)
is strictly decreasing and approaches

a horizontal asymptote of 0.4880... from above; for values of n = 101, 102, 103, 104

the respective ratios are 0.511..., 0.490..., 0.4882..., 0.4880.... It is difficult to formally
prove convergence to 0.4880... so we prove a slightly weaker lower bound of 0.48
on this function. From this it follows that in all cases the algorithm described in
Lemma 3.2.10 is guaranteed to produce a network consistent with at least a fraction
0.48 of T , improving considerably on the 5/12 ≈ 0.4166 fraction achieved in [JNS00].

Lemma 3.2.11 S(n)/3
(
n
3

)
> 0.48 for all n ≥ 0.

Proof: This can easily be computationally verified for n < 116, we have done this
with a computer program written in Java [Kel]. To prove it for n ≥ 116, assume

58 Phylogenetic trees/networks

by induction that the claim is true for all n′ < n. Instead of choosing the value of
a that maximizes S(n) we claim that setting a equal to z = ⌊2n/3⌋ is sufficient for
our purposes. We thus need to prove the following inequality:

(
z
3

)
+ 2

(
z
2

)
(n− z) + z

(
n−z

2

)
+ S(n− z)

3
(
n
3

) > 48/100.

Combined with the fact that, by induction, S(n−z)/3
(
n−z

3

)
> 48/100, it is sufficient

to prove that:

(
z
3

)
+ 2

(
z
2

)
(n− z) + z

(
n−z

2

)
+ 144/100

(
n−z

3

)

3
(
n
3

) > 48/100

Using Mathematica we rearrange the a inequality to:

⌊2n/3⌋
(

22 + 9n + 33n2 − 6(7 + 18n)⌊2n/3⌋+ 86⌊2n/3⌋2
)

n(2− 3n + n2)
< 0

Taking (2n/3)− 1 as a lower bound on ⌊2n/3⌋, and 2n/3 as an upper bound, it can
be easily verified that the above inequality is satisfied for n ≥ 116. ⊔⊓
To conclude this section we combine Lemmas 3.2.10 and 3.2.11 into the following
Theorem.

Theorem 3.2.12 Let T be a set of input triplets labelled by n species. In time
O(n3 + n|T |) it is possible to construct a level-1 network N consistent with at least
a fraction S(n)/3

(
n
3

)
> 0.48 of T , and this is worst-case optimal.

3.2.6 A lower bound for level-2 networks

Theorem 3.2.13 Let T be a set of input triplets labelled by n species. It is possible
to find, in polynomial time, a level-2 network N (T) such that N (T) is consistent
with at least a fraction 0.61 of T .

Proof: We prove the theorem by showing how to construct a topology, which we
call LB2(n), consistent with at least 0.61 of the triplets in T1(n). Using Theorem
3.2.5, LB2(n) can then be labelled to obtain the network N (T). We show by
induction how LB2(n) can be constructed. We take n < 16813 as the induction
base; for these values of n we refer to a simple computational proof written in Java
[Kel]. We now prove the result for n ≥ 16813. Let us assume by induction that,
for any n′ < n, there exists some topology LB2(n′) such that #LB2(n′) ≥ 0.61. If
we let t(n′) equal the number of triplets in T1(n′) consistent with LB2(n′), we have

that t(n′)/3
(
n′

3

)
≥ 0.61 and thus that t(n′) ≥ 1.83

(
n′

3

)
. Consider the structure in

Figure 3.4. For S ∈ {A, B, C, D, E}, we define the operation hanging l leaves from
side S as replacing the edge S with a directed path containing l internal vertices,

3.2 Constructing networks consistent with big fraction of triplets 59

Figure 3.4: We construct the network LB2(n) by repeatedly chaining the struc-
ture on the left, a simple level-2 network together to obtain an overall topology
resembling the structure on the right.

and then attaching a leaf to each internal vertex. We construct LB2(n) as follows.
We create a copy of the structure from the figure and hang c = ⌊0.385n⌋ leaves from
side C, d = ⌊0.07n⌋ from side D and e = ⌊0.26n⌋ from side E. We let f = ⌊0.285n⌋
and add the edge (F, r), where r is the root of the network LB2(f). Finally we hang
a = n− (c + d + e + f) leaves from side A; it might be that a = 0. (The only reason
we hang leaves from side A is to compensate for the possibility that c + d + e + f
does not exactly equal n.) This completes the construction of LB2(n). Note that as
in Section 3.2.5, the network is constructed by recursively chaining the same basic
structure together.

We can use Mathematica to show that LB2(n) is consistent with at least 0.61
of the triplets in T1(n). In particular, by explicitly counting the triplets consistent
with LB2(n) we derive an inequality expressed in terms of n, c, d, e, f, t(f), which
Mathematica then simplifies to a cubic inequality in n that holds for all n ≥ 16813.
(To simplify the inequality we take x− 1 as a lower bound on ⌊x⌋ and assume that
no leaves are hung from side A). The Mathematica script is reproduced in Figure
3.5, and can be downloaded from [Kel]. Finally, we comment that the networks
computationally constructed for n < 16813 are, essentially, built in the same way
as the networks described above. The only difference is that, to absorb inaccuracies
arising from the floor function, we try several possibilities for how many leaves
should be hung from each side; for side C, for example, we try also (c − 1) and
(c + 1) leaves. ⊔⊓

3.2.7 Conclusions and open questions

With Theorem 3.2.5 we have described a method which shows how, in polynomial
time, good solutions for the full triplet set can be efficiently converted into equally

60 Phylogenetic trees/networks
c@nD = HH385�1000L*nL - 1
d@nD = HH70�1000L*nL - 1
e@nD = HH260�1000L*nL - 1
f@nD = HH285�1000L*nL - 1
t@nD = H3*H610�1000L*Binomial@f@nD, 3DL

Simplify@
H Binomial@c@nD, 3D + Binomial@d@nD, 3D + Binomial@e@nD, 3D + t@nD + HBinomial@c@nD, 2D*d@nDL +

HBinomial@c@nD, 2D*e@nDL + HBinomial@c@nD, 2D*f@nDL + Hc@nD*d@nD*e@nDL +
Hc@nD*d@nD*f@nDL + HBinomial@c@nD, 2D*e@nDL + Hc@nD*e@nD*d@nDL +
Hc@nD*e@nD*f@nDL + HBinomial@c@nD, 2D*f@nDL + Hc@nD*f@nD*d@nDL +
Hc@nD*f@nD*e@nDL + HBinomial@d@nD, 2D*c@nDL + HBinomial@d@nD, 2D*e@nDL +
HBinomial@d@nD, 2D*f@nDL + Hd@nD*f@nD*c@nDL + HBinomial@d@nD, 2D*f@nDL +
Hd@nD*f@nD*e@nDL + HBinomial@e@nD, 2D*c@nDL + HBinomial@e@nD, 2D*d@nDL +
HBinomial@e@nD, 2D*f@nDL + He@nD*f@nD*c@nDL + He@nD*f@nD*d@nDL +
HBinomial@e@nD, 2D*f@nDL + HBinomial@f@nD, 2D*c@nDL + HBinomial@f@nD, 2D*d@nDL +
HBinomial@f@nD, 2D*e@nDLL � H3*Binomial@n, 3DL > H610�1000L D

��

-147984000000 + 94041640000 n - 16470260400 n2 + 979319 n3

n I2 - 3 n + n2M
> 0

ReduceB ��-147984000000 + 94041640000 n - 16470260400 n2 + 979319 n3

n I2 - 3 n + n2M
> 0, n, Integers F

n Î Integers && Hn £ -1 ÈÈ n ³ 16813L

Figure 3.5: The Mathematica script used in the proof of Theorem 3.2.13.

good, or better, solutions for more general triplet sets. Where best-possible solutions
are known for the full triplet set, this leads to worst-case optimal algorithms, as
demonstrated by Theorem 3.2.12. An obvious next step is to use this method
to generate algorithms (where possible worst-case optimal) for wider subclasses of
phylogenetic networks. Finding the/an “optimal form” of level-2 networks for the
full triplet set remains a fascinating open problem.

From a biological perspective (and from the perspective of understanding the
relevance of triplet methods) it is also important to attach meaning to the networks
that the techniques described in this section produce. For example, we have shown
how, for level-1 networks, we can always find a network isomorphic to a galled
caterpillar which is consistent with at least a fraction 0.48 of the input. If we do
this, does the location of the species within this galled caterpillar communicate
any biological information? Also, what does it say about the relevance of triplet
methods, and especially the level-k hierarchy, if we know a priori that a large
fraction (already for level 2 more than 0.61) of the input can be made consistent
with some network from the subclass? And, as discussed in Section 3.2.4, how
far can the techniques described in this section be used as a quality measure for
networks produced by other algorithms?

As mentioned in the introduction, an algorithm guaranteed to find a network
consistent with a fraction p′ of the input trivially becomes a p′-approximation for
the MAX variant of the problem (where we optimize not with respect to |T | but with
respect to the size of the optimal solution for T .) In fact, the best-known approxi-
mation factor for MAX-LEVEL-0 is 1/3, a trivial extension of the fact that p = 1/3
for trees [GJLO99]. On the other hand, the APX-hardness of this problem implies
that an approximation factor arbitrarily close to 1 will not be possible. It remains a
highly challenging open problem to determine whether better approximation factors

3.3 An attempt to break the 1/3 barrier for trees 61

can be obtained for the latter problem via some different approach. (For some more
discussion and partial results see the following section.) Alternatively, there could be
some complexity theoretic reason why approximation factors better than p (where p
is optimal in our formulation) are not possible. Under strong complexity-theoretic
assumptions the best approximation factor possible for MAX-3-SAT, for example,
uses a trivial upper bound of all the clauses in the input [H̊as97], analogous perhaps
to using |T | as an upper bound.

3.3 An attempt to break the 1/3 barrier for trees

In this section we will list a number of partial results obtained when trying to
improve the approximation ratio for the problem of finding the best tree for a given
set of triplets, also called MAX-LEVEL-0.

As most of the results presented here are reductions between problems, let us first
recall the names of the involved problems and the relevant approximation results.

MAX SUBDAG. Also called LINEAR ORDERING. The problem is to find a
maximal cardinality, acyclic subset of edges in a given graph. There is a trivial
1/2-approximation: consider any ordering of vertices, try this and the opposite
ordering; an edge is either consistent with one ordering or the other, hence one of
these orderings induces a set of edges with cardinality at least half the total number
of edges.

Concerning hardness: there is a lower bound of 65/66 [PY91].

FEEDBACK ARC SET. It is the dual of the above problem, it asks to mini-
mize the number of edges necessary to remove. No constant factor approximation
is known. There is a PTAS for tournaments [KMS07], and a Fixed Parameter
Tractability (FPT) algorithm [CLL+08] (the number of edges to remove is the pa-
rameter, for a definition of FPT see Section 1.2).

MAX-LEVEL-0. In this problem we are given a set of triplets and we are sup-
posed to find a tree that is consistent with the maximal number of triplets. By the
algorithm of Ga̧sieniec et al. [GJLO99] we may find a tree consistent with 1/3 of
the triplets, hence there is a 1/3-approximation algorithm.

By a reduction form MAX SUBDAG (see Section 3.3.2), there is no approxima-
tion better than 65/66.

MIN-LEVEL-0. It is dual of the above problem, the objective is to minimize the
number of triplets that are not consistent with the resulting tree. Little is known
about approximation for this problem.

MAX-LEVEL-0-LABELING. The problem is a variant of MAX-LEVEL-0,
where the topology (i.e., the shape of the tree) is given as an input. By the ran-

62 Phylogenetic trees/networks

domized relabeling methods described in the previous section we obtain a simple
1/3 approximation for this problem.

MAX-CATERPILLAR. A special case of MAX-LEVEL-0-LABELING, where
the given shape is a caterpillar. Recall that caterpillar is a tree such that after
removal of leaves (and edges incident to leaves) the remaining graph is a path.

The algorithm of Ga̧sieniec et al. [GJLO99] gives 1/3-approximation. Our re-
duction from MAX SUBDAG also proves 65/66-approximation hardness for this
problem.

MIN-CATERPILLAR. As above, except that we minimize the number of in-
consistent triplets.

3.3.1 A bottom-up 1/3-approximation algorithm for MAX-LEVEL-0

Here, we present a simple polynomial-time approximation algorithm for MAX-
LEVEL-0 which always outputs a tree consistent with at least 1

3 of the rooted
triplets in the input set T . The novel property of our algorithm is that it naturally
combines the 1

3 approximation guarantee with the property that, given a feasible
set of triplets, the algorithm finds a tree consistent with all of them. Note, that the
latter property is a feature of the algorithm of Aho et al. [ASSU81]. The structure
of our algorithm is identical to that of the greedy bottom-up heuristic proposed
by Wu [Wu04], but we use a new scoring function to give an easy proof of the
approximation factor.

Intuitively, in each iteration the algorithm looks for two currently existing trees
Si, Sj whose leaves participate in many rooted triplets of the form xy|z where x
belongs to Si, y belongs to Sj , and z does not belong to either Si or Sj , and then
merge Si and Sj .

Let R be the final tree returned by Algorithm Greedy bottom-up(T). To analyze
the approximation factor, we introduce the following notation. For any node u of R,
let L[u] be the set of leaf labels in the subtree of R rooted at u. For each internal
node u in R, denote the two children of u by u1 and u2, and let T (u) be the subset
of T defined by T (u) = {xy|z ∈ T : ∃a, b, c ∈ {x, y, z} such that a ∈ L[u1],
b ∈ L[u2], and c 6∈ L[u1] ∪ L[u2]}. Note that for any two internal nodes u and v,
T (u) and T (v) are disjoint. Also, each xy|z ∈ T belongs to T (u) for some internal
node u. Thus, the internal nodes of R partition T into disjoint subsets. For each

3.3 An attempt to break the 1/3 barrier for trees 63

Algorithm Greedy bottom-up

Input: A set T of rooted triplets on a leaf set L = {ℓ1, ℓ2, . . . , ℓn}.
Output: A tree with leaf set L consistent with at least one third of the rooted
triplets in T .

1. Construct the set S = {S1, S2, . . . , Sn}, where each Si is a tree consisting
of a leaf labeled by ℓi.

2. Repeat n− 1 times:

(a) For every Si, Sj ∈ S, reset score(Si, Sj) := 0.

(b) For every xy|z ∈ T such that x ∈ Si, y ∈ Sj , and z ∈ Sk for three
different trees Si, Sj , Sk, update score as follows:
score(Si, Sj) := score(Si, Sj) + 2;
score(Si, Sk) := score(Si, Sk)− 1;
score(Sj , Sk) := score(Sj , Sk)− 1.

(c) Select Si, Sj ∈ S such that score(Si, Sj) is maximum.

(d) Create a tree Sk by connecting a new root node to the roots of Si

and Sj .

(e) S := S ∪ {Sk} \ {Si, Sj}.

3. Return the tree in S.

internal node u of R, we further partition the set T (u) into two disjoint subsets T (u)′

and T (u)′′ where T (u)′ are the rooted triplets in T (u) which are consistent with R
and T (u)′′ = T (u) \ T (u)′.

Lemma 3.3.1 |T (u)′| ≥ 1
3 · |T (u)| for all internal nodes u of R.

Proof: Consider the iteration of Algorithm Greedy bottom-up(T) in which the
node u is created as a new root node for two trees Si and Sj selected in Step 2c.
Clearly, score(Si, Sj) ≥ 0. Moreover, by the definition of score in Steps 2a and 2b
and the construction of R, we have score(Si, Sj) = 2 · |T (u)′| − |T (u)′′|. Since
|T (u)′′| = |T (u)| − |T (u)′|, we obtain |T (u)′| ≥ 1

3 · |T (u)|. ⊔⊓

Corollary 3.3.2 For any set T of rooted triplets, Algorithm Greedy bottom-up(T)
returns a tree consistent with at least one third of the rooted triplets in T .

Proof: Follows directly from Lemma 3.3.1 and the fact that T is partitioned into
disjoint subsets by the internal nodes of R. ⊔⊓

64 Phylogenetic trees/networks

3.3.2 Reduction from MAX SUBDAG

Here we present a reduction that rules out, under standard complexity-theoretic
assumptions, the existence of a PTAS (see Section 1.2 for a definition) for MAX-
LEVEL-0, MAX-CATERPILLAR, and therefore also for MAX-LEVEL-0-LABE-
LING. Moreover, this reduction also implies that constructing a (2−ǫ)-approximation
algorithm for any of these three problems would automatically give a nontrivial ap-
proximation algorithm for the MAX SUBDAG problem, which would be a major
result.

Proposition 3.3.3 MAX-LEVEL-0 and MAX-CATERPILLAR are both APX-
complete.

Proof: By Theorem 1 we may label any tree topology to make it consistent with
1/3 of the given triplets. Therefore, both problems are in the class APX. To prove
APX-hardness we use a reduction proposed by Wu [Wu04] and we show that it is
actually an L-reduction from the MAX SUBDAG problem. Both L-reductions and
the MAX SUBDAG problem were studied by Papadimitiou and Yannakakis [PY91].
MAX SUBDAG, which is equivalent to the problem LINEAR ORDERING, has been
proven APX-complete [NV01][PY91].

In the MAX SUBDAG problem we are given a directed graph G = (V, A), and
the goal is to find a maximal cardinality subset of arcs A′ ⊂ A such that G′ = (V, A′)
is acyclic.

In the reduction of Wu, one constructs an instance of the MAX-LEVEL-0 prob-
lem from a given directed graph G = (V, A) as follows. Let x /∈ V and consider the
set of triplets T containing a single triplet tuv = vx|u for every arc (u, v) ∈ A, where
X = X(T) = V ∪ {x}. To argue that it is an L-reduction it remains to prove the
following two claims.

1) If there exists a subset of arcs A′ ⊂ A such that G′ = (V, A′) is acyclic and
|A′| = k, then there exists a phylogenetic tree consistent with at least k triplets from
T . To prove this claim, we consider a topological sorting of vertices in graph G′.
We construct a caterpillar with leaves labeled (top-down) by such sorted vertices,
the lowest leaf is labelled by x. It remains to observe that for any arc (u, v) ∈ A′ the
corresponding triplet tuv is consistent with the obtained phylogenetic tree. Observe,
that the fact that the constructed tree is actually a caterpillar makes the reduction
only stronger and therefore applicable also to the MAX-CATERPILLAR problem.

2) Given a phylogenetic tree B consistent with l triplets from T , we may construct
in polynomial time a subset of arcs A′ ⊂ A such that G′ = (V, A′) is acyclic and
|A′| = l. In fact we will show that it suffices to take A′ consisting of the arcs (u, v)
such that the corresponding triplet tuv is consistent with B. We only need to argue
that for such a choice of A′ the resulting graph G′ = (V, A′) is acyclic. Consider
the path in the tree B from the root node to the leaf labeled by the special species
x. For any vertex v ∈ A, the species v has an internal node on this path where he
branched out of the evolution of x, namely the lowest common ancestor of u and
x (LCA(u, x)). Observe, that the position of LCA(u, x) induces a partial ordering
>B on A. Recall, that if a triplet tuv = vx|u is consistent with B, then LCA(u, x)

3.3 An attempt to break the 1/3 barrier for trees 65

is a proper ancestor of LCA(v, x). Therefore, the consistent triplets from T induce
another partial ordering that may be extended to >B. This implies that for A′

containing the arcs (u, v) such that a triplet tuv is consistent with B, the graph
G′ = (V, A′) is acyclic.

With the above construction we have shown that the existence of an ǫ-approxima-
tion algorithm for the MAX-LEVEL-0 problem implies existence of an ǫ-approxima-
tion algorithm for the MAXIMUM SUBDAG problem. In particular, existence of a
(Polynomial-Time Approximation Scheme) PTAS for MAX-LEVEL-0 would imply
existence of PTAS for MAXIMUM SUBDAG, which is unlikely due to the results
in [NV01] and [PY91].

As mentioned in Claim 1), the networks produced by the reducion are caterpilars,
hence the problem MAX-CATERPILLAR is also APX-hard.

⊔⊓

3.3.3 MIN CATERPILLAR reduced to FEEDBACK ARC SET

We will now discuss a reduction form the MIN CATERPILLAR problem to the
FEEDBACK ARC SET problem. The reduction is approximation preserving and
it also translates the FPT algorithm for the FEEDBACK ARC SET problem to an
FPT algorithm for the MIN CATERPILLAR problem.

Lemma 3.3.4 Given a triplet set T on n species, we may construct a directed graph
G with n + |T | vertices and 3|T | edges such that there exists a feedback arc set of
cardinality k if and only if there exists a “phylogenetic” caterpillar consistent with
all but k triplets from t.

Proof: The graph is constructed as follows. There are two groups of vertices,
one represents the n species, and the other represent the triplets. For every triplet
t = xy|z ∈ T there are three directed edges in G: z → t, t→ x, and t→ y.

Suppose there is a caterpillar C consistent with all but k triplets. We will show
that there are k edges whose removal makes the graph acyclic. Consider the removal
of the “z → t” edge for each of the inconsistent triplets. We will construct a linear
ordering consistent with the remaining edges. Let species be ordered as on the
caterpillar C and let every consistent triplet t be placed just before its first short
leg species. Finally, let the inconsistent triplets be placed before the first species in
the ordering. It is easy to check that all the not deleted edges go along the chosen
ordering.

Suppose there is a feedback arc set of size k. We may remove all the triplets
incident to the feedback edges. The remaining graph is acyclic, hence we may take
just the ordering of species and put them on the caterpillar accordingly. For any
triplet xy|z that was not removed, there are paths z → x and z → y in the graph,
hence z is above x and y on the caterpillar, which makes xy|z consistent. ⊔⊓

We may use the above reduction to translate approximation results for the
FEEDBACK ARC SET to the MIN CATERPILLAR problem. In particular, the
result of Even et al. [ENSS98] gives the following.

66 Phylogenetic trees/networks

Corollary 3.3.5 There exists a O(log n log log n)-approximation algorithm for the
MIN CATERPILLAR problem.

We may also apply the recent result of Chen et al. [CLL+08] to obtain the
following.

Corollary 3.3.6 There exists an FPT algorithm for the MIN CATERPILLAR
problem.

3.3.4 Maximization reduced to minimization

In this section we prove that finding a constant factor approximation algorithm
to the minimization version of a triplet consistency problem would automatically
improve the approximation factor for the corresponding maximization problem. The
following applies to both finding the best tree and finding the best caterpillar. Since
the greedy algorithm of Ga̧sieniec et al. produces a network consistent with 1/3 of
the input triplets (not only 1/3 of the triplets in the optimal solution), it is actually
a better approximation when the optimum is small. Suppose there was a constant
factor approximation algorithm for the minimization version, then we could combine
it with the algorithm of Ga̧sieniec et al. to improve the factor of 1/3.

Lemma 3.3.7 Given an α-approximation algorithm for the MIN-LEVEL-0 (MIN-
CATERPILLAR), we may construct a 1

3−2/α -approximation algorithm for the MAX-

LEVEL-0 (MAX-CATERPILLAR).

Proof: The algorithm is simply to run both the α-approximation algorithm and
the algorithm of Ga̧sieniec et al., and to return the better of the two solutions. Let
OPT (T) denote the fraction of triplets consistent with the optimal tree (caterpillar).
We will argue that depending on the value of OPT (T) either the first or the second
algorithm gives a good approximation.

Observe that 1−OPT (T) is the optimal fraction of inconsistent triplets, hence
the α-approximation algorithm will return a tree (caterpillar) inconsistent with at
most α(1 − OPT (T)) fraction of triplets, hence consistent with at least 1 − α(1 −
OPT (T)). Comparing it to the optimum gives the quality of 1−α(1−OPT (T))

OPT (T) =

α− α−1
OPT (T) . Note, that this quantity is monotone increasing with OPT (T).

The quality of the solution given by the algorithm of Jasper et al. compared to

the optimum is 1/3
OPT (T) which is monotone decreasing with OPT (T).

The worst possible value of OPT (T) for the combination of these algorithms
is when they give equally good solutions. We may calculate this value from
1/3 = 1 − α(1 − OPT (T)), which gives OPT (T) = 1 − 2

3α . Substituting this

value to the analysis of one of the algorithms gives 1/3
OPT (T) = 1/3

1− 2
3α

= 1
3−2/α . ⊔⊓

3.3.5 Additional remarks

It is a fascinating open problem, whether it is possible to approximate the best
phylogenetic tree better. This seems to be related to the question about the nature

3.4 Comparing two trees 67

of the triplet constrains.
A natural next step is to try to apply semidefinite programming techniques to

the problem. We shell report here, that SDP was successfully used in the context
of a related problem called BETWEENNESS. In this problem we are asked to find
and ordering of elements subject to constraints of the form “a should be between b
and c”. The result of Chor and Sudan [CS98] is that, in case of satisfiable instances,
we may produce in polynomial time the ordering consistent with 1/2 of the con-
straints. Note, that this result is weaker than what we can do for triplet consistency
problems, where it is possible to actually construct the feasible tree is such exists.
Therefore, the BETWEENNESS problem is not any easier than triplet consistence,
and reducing triplet consistency to BETWEENNESS does not really help.

Another related result that should be mentioned is the heavy inconsistency of
random triplet sets. Guillemot [Gui] studied the instances produced by taking each
possible triplet on a fixed set of species with a fixed probability p. He proved, using
existential arguments, that for such a random instance, with high probability, there
is no phylogenetic network consistent with a nontrivial fraction of the given triplets
(e.g. fraction less then 1/3 for trees).

Having all these partial results we are still unable to make any step forward.
A possible explanation would be, that the problem is actually hard to approxi-
mate any better than with a random solution. The relation between the MAX-
CATERPILLAR problem and the MAX SUBDAG problem could probably be even
more exploited. It is still possible, that the existence of (3 − ǫ)-approximation for
MAX-CATERPILLAR is related to existence of (2 − ǫ)-approximation for MAX
SUBDAG.

3.4 Comparing two trees

3.4.1 Introduction

In this section we are interested in drawing so-called tanglegrams [Pag02], that
is, pairs of trees whose leaf sets are in one-to-one correspondence. The need to
visually compare pairs of trees arises in applications such as the analysis of software
projects, phylogenetics, or clustering. In the first application, trees may represent
package-class-method hierarchies or the decomposition of a project into layers, units,
and modules. The aim is to analyze changes in hierarchy over time or to compare
human-made decompositions with automatically generated ones. Whereas trees in
software analysis can have nodes of arbitrary degree, trees from our second appli-
cation, that is, (rooted) phylogenetic trees, are binary trees. This makes binary
tanglegrams an interesting special case, see Figure 3.6. Hierarchical clusterings, our
third application, are usually visualized by a binary tree-like structure called den-
drogram, where elements are represented by the leaves and each internal node of the
tree represents the cluster containing the leaves in its subtree. Pairs of dendrograms
stemming from different clustering processes of the same data can be compared
visually using tanglegrams.

68 Phylogenetic trees/networks

(a) arbitrary drawing (b) drawing of our 2-approximation

Figure 3.6: A binary tanglegram showing two evolutionary trees for pocket gophers

In this section we consider binary tanglegrams if not stated otherwise. From the
application point of view it makes sense to insist that (a) the trees under consider-
ation are drawn planarly (namely, with no edge crossing), (b) each leaf of one tree
is connected by an additional edge to the corresponding leaf in the other tree, and
(c) the number of crossings among the additional edges is minimized. As in the
bioinformatics literature (e.g., [Pag02; LPR+07]), we call this the tanglegram layout
(TL) problem; Fernau et al. [FKP05] refer to it as two-tree crossing minimization.
Note that we are interested in the minimum number of crossings for visualization
purposes. The number is not intended to be a tree-distance measure. Examples for
such measures are nearest-neighbor interchange and subtree transfer [DHJ+97].

Related problems. In graph drawing the so-called two-sided crossing minimiza-
tion problem (2SCM) is an important problem that occurs when computing layered
graph layouts. Such layouts have been introduced by Sugiyama et al. [STT81] and
are widely used for drawing hierarchical graphs. In 2SCM, vertices of a bipartite
graph are to be placed on two parallel lines (called layers) such that vertices on one
line are incident only to vertices on the other line. As in TLs the objective is to
minimize the number of edge crossings provided that edges are drawn as straight-
line segments. In one-sided crossing minimization (1SCM) the order of the vertices
on one of the layers is fixed. 1SCM is also NP-hard [EW94]. In contrast to TLs,
a vertex in an instance of 1SCM or 2SCM can have several incident edges and the
linear order of the vertices in the non-fixed layer is not restricted by the internal
structure of a tree. The following is known about 1SCM in terms of approximation
and exact algorithms. The median heuristic of Eades and Wormald [EW94] yields
a 3-approximation and a randomized algorithm of Nagamochi [Nag05] yields an
expected 1.4664-approximation. Dujmovič et al. [DFK04] gave an FPT algorithm
that runs in O⋆(1.4664k) time, where k is the minimum number of crossings in any
2-layer drawing of the given graph that respects the vertex order of the fixed layer.
The O⋆(·)-notation ignores polynomial factors (see Section 1.2).

3.4 Comparing two trees 69

Previous work. Dwyer and Schreiber [DS04] studied drawing a series of tangle-
grams in 2.5 dimensions, i.e., the trees are drawn on a set of stacked two-dimensional
planes. They considered a one-sided version of the TL problem by fixing the layout
of the first tree in the stack, and then, layer-by-layer, computing the leaf order of
the next tree in O(n2 log n) time each. Fernau et al. [FKP05] showed that the TL
problem is NP-hard and gave a fixed-parameter algorithm that runs in O⋆(ck) time,
where c is a constant that they estimate to be 1024 and k is the minimum number
of crossings in any drawing of the given tanglegram. They showed that the problem
can be solved in O(n log2 n) time if the leaf order of one tree is fixed. This improves
the result of Dwyer and Schreiber [DS04]. They also made the simple observa-
tion that the edges of the tanglegram can be directed from one root to the other.
Thus the existence of a planar drawing can be verified using a linear-time upward-
planarity test for single-source directed acyclic graphs [BDMT98]. Nearly ten years
later, apparently not knowing these previous results, Lozano et al. [LPR+07] gave
a quadratic-time algorithm for the same special case, to which they refer as planar
tanglegram layout.

Our results. We first take a closer look at the complexity of the TL problem, see
Section 3.4.2. By a new reduction from Max2Sat we show that the TL problem
is NP-hard even when restricted to complete binary trees. We further show that
without this restriction, the TL problem is essentially as hard as the MinUncut

problem. If the (widely accepted) Unique Games Conjecture holds, it is NP-hard
to approximate MinUncut and thus TL within any constant factor.

Our main result is a 2-approximation for complete binary TLs that runs in
O(n3) time, see Section 3.4.3. It can be generalized to complete d-ary trees, where
it yields a factor-(1 +

(
d
2

)
) approximation in O(n1+2 logd(d!)) time. For d ≥ 3 this is

upper-bounded by O(n2d−1.7).
Next we give a new fixed-parameter algorithm for complete binary TLs that is

both much simpler and much faster than the FPT algorithm for general binary TLs
by Fernau et al. The running time of our algorithm is O⋆(4k), see Section 3.4.4.

We have implemented our 2-approximation algorithm and have applied it to
complete binary trees and, as a heuristic, to general binary trees. Our data consists
of real-world phylogenetic trees and clustering dendrograms and of randomly gener-
ated examples. We compare our results with the optimal solutions computed with
an integer quadratic program, see Section 3.4.5.

Formalization. We denote the set of leaves of a tree T by L(T). We are given
two rooted trees S and T with n leaves each. We require that S and T are uniquely
leaf-labeled, that is, there are bijective labeling functions λS : L(S) → Λ and λT :
L(T)→ Λ, where Λ is a set of labels, for example, Λ = {1, . . . , n}. These labelings
define a set of new edges {uv | u ∈ L(S), v ∈ L(T), λS(u) = λT (v)}, the inter-tree
edges. The TL problem is to find plane drawings of S and T that minimize the
number of induced crossings of the inter-tree edges, assuming that edges are drawn
as straight-line segments. We additionally insist that the leaves in L(S) are placed

70 Phylogenetic trees/networks

on the vertical line x = 0 and those in L(T) on the line x = 1. The trees S and T
themselves are drawn to the left of x = 0 and to the right of x = 1, respectively. For
an example, see Figure 3.6. We use notation 〈S, T 〉 when referring to this instance
of the TL problem.

The TL problem is purely combinatorial: Given a tree T , we say that a linear
order of L(T) is compatible with T if for each node v of T the nodes in the subtree
of v form an interval in the order. Given a permutation π of {1, . . . , n}, we call (i, j)
an inversion in π if i < j and π(i) > π(j). For fixed orders σ of L(S) and τ of L(T)
we define the permutation πτ,σ, which for a given position in τ returns the position
in σ of the leaf having the same label. Now the TL problem consists of finding an
order σ of L(S) compatible with S and an order τ of L(T) compatible with T such
that the number of inversions in πτ,σ is minimum.

3.4.2 Complexity

In this section we consider the complexity of the TL problem for complete and
for general binary trees. Fernau et al. [FKP05] have shown that the TL problem is
NP-complete for general binary trees. Their proof, however, uses extremely unbal-
anced trees and does not extend to complete binary trees. We show that the TL
problem remains hard even when restricted to complete binary trees. We reduce
from Max2Sat with at most 3 occurrences of each variable.

Our proof is completely different from that of Fernau et al., who reduce from
MaxCut. We construct a TL instance (see Figure 3.7) in which one pair of aligned
subtrees contains the variable gadgets. The two pairs of aligned subtrees to both
sides of the variable gadgets contain the clause gadgets. The fourth pair of aligned
subtrees on the same level has no crossings. Each clause gadget is modeled by a
pair of smaller subtrees, see Figure 3.8. These are connected by inter-tree edges
to the gadgets of the two corresponding variables. These edges cause exactly one
additional crossing for each unsatisfied clause in an optimal solution. Thus we can
infer the maximum number of satisfied clauses from an optimal TL solution.

Theorem 3.4.1 The TL problem is NP-complete even for complete binary trees.

Proof: Recall the Max2Sat problem which is defined as follows. Given a set
U = {x1, . . . , xn} of Boolean variables, a set C = {c1, . . . , cm} of disjunctive clauses
containing two literals each, and an integer K, the question is whether there is a
truth assignment of the variables such that at least K clauses are satisfied. We
consider a restricted version of Max2Sat, where each variable appears in at most
three clauses. This version remains NP-complete [RRR98].

Our reduction constructs two complete binary trees S and T , in which certain
aligned subtrees serve as variable gadgets and others as clause gadgets. We further
determine an integer K ′ such that the instance 〈S, T 〉 has less than K ′ crossings
if and only if the corresponding Max2Sat instance has a truth assignment that
satisfies at least K clauses.

The high-level structure of the two trees is depicted in Figure 3.7. From top to
bottom, the four subtrees at level 2 on both sides are a clause subtree, a variable

3.4 Comparing two trees 71

subtree, another clause subtree, and finally a dummy subtree. The subtrees are
connected to each other by edges such that in any optimal solution they must be
aligned in the depicted (or mirrored) order. Each clause gadget appears twice, once
in each clause subtree, and is connected to the variable gadgets belonging to its two
literals. Pairs of corresponding gadgets in S and T are connected to each other.
Finally, non-crossing dummy edges connect unused leaves to complete S and T . In
the following we describe the gadgets in more detail.

Variable gadgets. The basic structure of a variable gadget consists of two com-
plete binary trees with 32 leaves each as shown in Figure 3.8. Each tree has three
highlighted subtrees of size 2 labeled a, b, c and a′, b′, c′, respectively. From each of
these subtrees there is one red connector edge leaving the gadget at the top and
one leaving it at the bottom. As long as two connector edges from the same tree
do not cross each other, they transfer the vertical order of the labeled subtrees to-
wards a clause gadget. We define the configuration in Figure 3.8a as true and the
configuration in Figure 3.8b as false. If the configuration is in its true state, the
induced vertical order of the connector edges is a < b < c, otherwise the order is
inverse: c < b < a. It can easily be verified that both states have the same number
of crossings. To see that it is optimal observe that each pair of connector edges
from the same subtree (for example, subtree a) always crosses all 26 gray edges in

Figure 3.7: High-level structure of the two trees S and T . Red edges connect clause
and variable gadgets, green edges connect corresponding gadget halves, and gray
edges are dummy edges to complete the trees.

72 Phylogenetic trees/networks

(a) x = true (b) x = false

Figure 3.8: The variable gadget in its two optimal
configurations with 184 crossings. Red edges are
drawn solid, whereas dash-dot style is used for gray
edges.

(a) A single gray edge.

(b) Two pairs of connector edges
for a variable used in three clauses.

Figure 3.9: Replacing each
edge by four edges.

the gadget. Furthermore all 24 crossings of two connector edges in the figure are
mandatory. Finally, the four crossings among the gray edges between subtrees 1
and 2′ and subtrees 2 and 1′ are also optimal. (Otherwise, if subtree 1 is opposite of
subtree 2′, then there are at least 120 gray–gray crossings in addition to the 24 red–
red crossings and the 156 red–gray crossings as opposed to a total of 184 crossings
in either configuration of Figure 3.8.)

Note that so far the gadget in the figure is designed for a single appearance of
the variable since the four connector-edge triplets are required for a single clause.

3.4 Comparing two trees 73

However, for the Max2Sat reduction each variable can appear up to three times
in different clauses. By appending a complete binary tree with four leaves as in
Figure 3.9 to each leaf of the gadget in Figure 3.8 and copying each edge accordingly
the above arguments still hold for the enlarged trees with 128 leaves each. Unused
connector edges in opposite subtrees are linked to each other (a to a′ etc.) as in
Figure 3.9b such that the number of crossings in the gadget remains balanced for
both states.

Clause gadgets. For each clause ci = li1 ∨ li2, where li1 and li2 denote the two
literals, we create two clause gadgets: one in the upper clause subtrees and one
in the lower clause subtrees (recall Figure 3.7). Each gadget itself consists of two
parts: one part that uses the connectors from the first variable in the left tree and
those from the second variable in the right tree and vice versa. Figure 3.10 shows
one such part of the gadget in the lower clause subtrees, where the connector edges
lead upwards. The gadget in the upper clause subtree is simply a mirrored version.

The basic structure consists of two aligned subtrees with eight leaves as depicted
in Figure 3.10. Three of the leaves on each side serve as the missing endpoints for
the triplets of connector edges from the corresponding variables. Recall that for a
positive literal with value true the order of the connector edges is a < b < c, and for
a positive literal with value false it is c < b < a. (For negative literals the meaning
of the orders is inverted.) The two connector leaves for the edges labeled a and
b are in the same subtree with four leaves, the connector leaf for c is in the other
subtree. Three cases need to be distinguished. If (1) both literals are true then the
configuration in Figure 3.10a is optimal with 21 crossings. If (2) only one literal
is true then Figure 3.10b shows an optimal configuration with 21 crossings again.
Here the tree on the right side is rotated in its root node. Finally, if (3) both literals
are false then there are at least 22 crossings in the gadget as shown in Figure 3.10c.
Since this substructure is repeated four times for each clause we have 84 induced
crossings for satisfied clauses and 88 induced crossings for unsatisfied clauses.

We construct the gadgets for all variables and clauses and link them together
as two trees S and T , which are filled up such that they become complete binary
trees. The general layout is as depicted in Figure 3.7, where each dummy leaf in S is
connected to the opposite dummy leaf in T such that there are no crossings among
dummy edges. In each of the four main subtrees all dummy edges are consecutive.
Thus of all dummy edges only those in the variable subtree have crossings with
exactly half the connector edges.

It remains to compute the minimum number M of crossings that are always
necessary, even if all clauses are satisfied. Then the Max2Sat instance has a solution
with at least K satisfied clauses if and only if the constructed TL instance has a
solution with at most K ′ = M + 4(|C| − K) crossings. We get the corresponding
variable assignment directly from the layout of the variable gadgets.

The first step for computing M is to fix an order for the variable gadgets in the
variable subtree. Let this order be x1 < x2 < . . . < xn. To enforce this as the
vertical order of the variable gadgets we need to establish links between adjacent

74 Phylogenetic trees/networks

(a) true ∨ true: 21 crossings.

(b) false ∨ true: 21 crossings.

(c) false ∨ false: 22 crossings.

Figure 3.10: The clause gadget
for a clause ci = li1 ∨ li2.

Figure 3.11: Linking adjacent variable gadgets
for xi and xi+1.

gadgets such that any other order would increase the number of crossings. For these
neighbor links we need eight of the 128 leaves in each half of each variable gadget
as shown in Figure 3.11. Since both subtrees below the root of xi in S and both
subtrees below the root of xi+1 in T are connected to each other, the minimum
number of crossings of those edges is independent of the truth state of each gadget.
However, separating two adjacent variables by tree rotations at higher levels in S
and T leads to a large number of extra crossings since the eight neighbor links would
cross all variable gadgets between xi and xi+1.

With the order of the variables fixed we sort all clauses lexicographically and
place smaller clauses towards the top of the clause subtrees. Consider two clause

3.4 Comparing two trees 75

gadgets in the same clause subtree. Then in the given clause order there are cross-
ings between their connector-edge triplets if and only if the intervals between their
respective variables intersect in the variable order. Since these crossings are un-
avoidable, the number of connector-triplet crossings in the lexicographic order of
the clauses is optimal. Now we can finally compute all necessary crossings between
connector edges, dummy edges and intra-gadget edges which yields the number M .

Since each gadget is of constant size the two trees and the number M can be
computed in polynomial time.

The fact that the complete binary TL problem belongs to the class NP follows
immediately from the NP-completeness of the general TL problem [FKP05]. ⊔⊓

Next we consider the complexity of the TL problem for two (not necessarily
complete) binary trees. We show that this problem is essentially as hard as the
MinUncut problem. As a result, we relate the existence of a constant-factor ap-
proximation for TL to the Unique Games Conjecture (UGC) by Khot [Kho02]. The
UGC became famous when it was discovered that it implies optimal hardness-of-
approximation results for problems such as MaxCut and VertexCover, and for-
bids constant factor-approximation algorithms for problems such as MinUncut and
SparsestCut. We reduce the MinUncut problem to the TL problem, which, by
the result of Khot and Vishnoi [KV05], makes it unlikely that an efficient constant-
factor approximation for TL exists.

The MinUncut problem is defined as follows. Given an undirected graph
G = (V, E), find a partition (V1, V2) of the vertex set V that minimizes the number
of edges that are not cut by the partition, that is, min(V1,V2) |{uv ∈ E : u, v ∈
V1 or u, v ∈ V2}|. Note that computing an optimal solution to MinUncut is equiv-
alent to computing an optimal solution to MaxCut. Nevertheless, the MinUncut

problem is more difficult to approximate.

Theorem 3.4.2 Under the Unique Games Conjecture it is NP-hard to approximate
the TL problem for general binary trees within any constant factor.

Proof: As mentioned above we reduce from the MinUncut problem. Note that
our reduction is similar to the one in the NP-hardness proof by Fernau et al. [FKP05].

Consider an instance G = (V, E) of the MinUncut problem. We will construct
a TL instance 〈S, T 〉 as follows. The two trees S and T are identical and there are
three groups of edges connecting leaves of S to leaves of T . For simplicity we define
multiple edges between a pair of leaves. In the actual trees we can replace each such
leaf by a binary tree with the appropriate number of leaves.

Suppose V = {v1, v2, . . . , vn}, then both S and T are constructed as follows.
There is a backbone path (v1

1 , v2
1 , v

1
2 , v

2
2 , . . . , v1

n, v2
n, a) from the root node v1

1 to a leaf
a. Additionally, there are leaves lS(vj

i) and lT (vj
i) attached to each node vj

i for
i ∈ {1, . . . , n} and j ∈ {1, 2} in S and T , respectively. The edges form the following
three groups.

Group A contains n11 edges connecting lS(a) with lT (a).

76 Phylogenetic trees/networks

Group B contains for every vi ∈ V n7 edges connecting lS(v1
i) with lT (v2

i), and
n7 edges connecting lS(v2

i) with lT (v1
i).

Group C contains for every vivj ∈ E a single edge from lS(v1
i) to lT (v1

j).

Suppose that in the optimal partition (V ∗
1 , V ∗

2) of G there are k edges that are
not cut. Then we claim that there exists a drawing of 〈S, T 〉 such that k·n11+O(n10)
pairs of edges cross. It suffices to draw, for each vertex vi ∈ V ∗

1 (vi ∈ V ∗
2), the leaves

lS(v1
i) and lT (v2

i) above (below) the backbones, and the nodes lS(v2
i) and lT (v1

i)
below (above) the backbones. It remains to count the crossings: there are k · n11

A–C crossings, no A–B crossings, O(n10) B–C crossings, and O(n4) C–C crossings.
Now suppose there exists an α-approximation algorithm for the TL problem

with some constant α. Then it can produce a drawing D(S, T) with at most α · k ·
n11 + O(n10) crossings. Let’s assume that n is much larger than α. We show that
from such a drawing D(S, T) we would be able to reconstruct a cut (V1, V2) in G
with at most α · k edges uncut. First, observe that if a node lS(v1

i) is drawn above
(below) the backbone in D(S, T), then lT (v2

i) must be drawn on the same side of
the backbone, otherwise it would result in n18 A–B crossings. Similarly lS(v2

i) must
be on the same side as lT (v1

i). Then observe that if a node lS(v1
i) is drawn above

(below) the backbone in D(S, T), then lS(v2
i) must be drawn below (above) the

backbone, otherwise there would be O(n14) B–B crossings. Finally, observe that if
we interpret the set of vertices vi for which lS(v1

i) is drawn above the backbone as
a set V1 of a partition of G, then this partition leaves at most α · k edges from E
uncut.

Hence, an α-approximation for the TL problem provides an α-approximation for
the MinUncut problem, which contradicts the UGC. ⊔⊓

3.4.3 Approximation

We now present our main result, a 2-approximation algorithm for TLs that runs
in O(n3) time. The idea is to split the problem recursively at the root of the trees
into two subproblems, each consisting of a pair of complete binary trees.

Let 〈S0, T0〉 be the TL instance we want to solve. At a given level 〈S, T 〉 in the
recursion, we have two trees S and T , typically part of larger trees (that is, S ⊆ S0

and T ⊆ T0). Let the roots of S and T be vS and vT , respectively. Besides the two
tress, we will use some additional information.

Firstly, associated with vS and vT we will have labels ℓS and ℓT that indicate
what choices in the recursion so far led to the current subproblems. A label is a
binary string, where ‘0’ or ‘1’ represents each of the two choices at each node in the
path from the root of the original tree, to the current root. The length of the labels
(denoted |ℓS | and |ℓT |) gives the depth of the recursion (see Fig. 3.13).

We also assign labels to some other subtrees of 〈S0, T0〉 besides S and T . Given
a leaf v ∈ T0 \ T , we define the nc-subtree of v, with respect to T , as the largest
complete binary subtree of T0 that does not contain T and contains v (defined
analogously for leaves in S0). Each different nc-subtree receives a label, in the same

3.4 Comparing two trees 77

Figure 3.12: Context
of subproblem 〈S, T 〉 =
〈(S1, S2), (T1, T2)〉.

Figure 3.13: Labels for a particular subproblem
〈S, T 〉. The numbers at the nodes show the choice
taken (swap/do not swap children) at that step of
the recursion that led to S and T .

way as S and T . For a given 〈S, T 〉, there are 2(|ℓS | + 1) = 2(|ℓT | + 1) different
labels. Note that the labels of the nc-subtrees are relative to the labels of vS and
vT (different S or T will lead to different labels). We will sometimes refer to the
label of leaf v, meaning the label of the nc-subtree of v.

Secondly, since S and T are part of a larger tree, some of the leaves of S may
not have the matching leaf in T (and vice versa). This means that at some previous
step of the algorithm, it was decided that such leaves will be matched to leaves in
some other subtrees, above or below 〈S, T 〉. We will not know exactly to which
leaves they are matched, but we will know, for each leaf, the label of the subtree
that contains the matching leaf.

At each level of the recursion we have to choose between one out of four con-
figurations. At each node vS on the left side, we must choose between having S1

above S2 or the other way around. On the right side for vT , there are also two
different ways of placing T1 and T2. We will try each of them, invoking the algo-
rithm recursively for the top half and for the bottom half. Then we will return the
configuration with the lowest number of crossings.

When counting the crossings that each option creates, we will distinguish two
types: current-level and lower-level crossings.

Current-level crossings are crossings that can be avoided at this level by choosing
one of the four configurations for the subtrees, independently of the choices to be
done elsewhere in the recursion. Figure 3.14 illustrates the different types of current-
level crossings. For the fourth type, (d), shown in Figure 3.14, we remark that the
crossings are considered to be current-level only if the nc-subtrees that contain the
endpoints of the edges outside S and T are different. Crossings that have the shape
of type (d) but with both endpoints going to the same nc-subtree cannot be counted
at this point, and will be called indeterminate crossings.

Lower-level crossings are crossings that appear based on choices taken by solving
the subproblems of S and T recursively. We cannot do anything about them at this

78 Phylogenetic trees/networks

Figure 3.14: Different types of current-level crossings. For the fourth type, (d), the
crossing is considered current-level only if the right leaves of the edges that cross
have different labels, that is, ℓT ′ 6= ℓT ′′ .

level, but we know their exact number after solving the subproblems.
Here’s a sketch of the algorithm.

1. For all four choices of arranging {S1, S2} and {T1, T2}, compute the total
number of lower-level crossings recursively. Before each recursive call 〈Si, Tj〉,
we assign proper labels to some of the leaves of S and T , as follows. We label
all leaves in Si that connect to T3−j (that is, T1 if j = 2, T2 otherwise) with
2ℓT plus 0 or 1 depending on whether Tj is above or below T3−j. Then we do
the analogue for all leaves of Tj connected to S3−i.

2. For each choice 〈Si, Tj〉 compute the number of current-level crossings (details
below).

3. Return the choice that has the smallest sum of lower-level and current-level
crossings.

It is important to notice that the labels are needed to propagate as much infor-
mation as possible to the smaller subproblems. For example, even though at this
stage of the recursion it is clear that the leaves of, say T3−j, are above the leaves of
the subtrees below T , once we recurse into the top subproblem, this information will
be lost, implying that what was a current-level crossing at this stage, will become an
indeterminate crossing later. The labeling allows to prevent this loss of information.

It remains to describe how to compute the number of current-level crossings ef-
ficiently. This can be done as follows. We go through all inter-tree edges incident to
leaves of each of the four subtrees and put each edge into one of at most O(log n) dif-
ferent classes depending on the labels of the other endpoints of the edges. Depending
on where (that is, above or below) the nc-subtrees go, all edge pairs belonging to a
specific pair of labels do or do not intersect. Hence we can count the total number
of current-level crossings in linear time.

The running time of the algorithm satisfies the recurrence relation T (n) ≤
8T (n/2) + O(n), which resolves to T (n) = O(n3) by the master method [CLRS01].

3.4 Comparing two trees 79

Figure 3.15: The pos-
sible locations for the
endpoints of the edges
are divided into four ar-
eas (numbered from 0
to 3). Each edge can
be classified according
to the areas of its end-
points.

Figure 3.16: The 14 different (relevant) groups of edges in
〈(S1, S2), (T1, T2)〉.

Theorem 3.4.3 The recursive algorithm computes a solution to the complete bi-
nary TL problem in O(n3) time. The resulting drawing has at most twice as many
crossings as an optimal drawing.

Proof: The algorithm will try, for a given subproblem 〈S, T 〉, all four possible
layouts of S = (S1, S2) and T = (T1, T2). Hence we can assume we know the order
of the children of vS and vT in an optimal solution. Assume, w.l.o.g., that it is
〈(S1, S2), (T1, T2)〉. We distinguish between four different areas for the endpoints of
the edges: above 〈S, T 〉, in 〈S1, T1〉, in 〈S2, T2〉, and below 〈S, T 〉. We number these
regions from 0 to 3 (see Figure 3.15). This allows us to classify the edges into 16
groups (two of which, 0–0 and 3–3, are not relevant). We will denote the number of
edges from area i to area j by nij (for i, j ∈ {0, 1, 2, 3}). Figure 3.16 shows the 14
different groups of edges.

The only edge crossings that our recursive algorithm cannot take into account
are the indeterminate crossings, which occur when the two edges connect to leaves
above/below 〈S, T 〉, that are in the same nc-subtree (thus both leaves have the same
label). The occurrence of such a crossing cannot be determined from the current
subproblem because it depends on the relative location of the other two endpoints
of the edges. However, we can bound the number of these crossings.

80 Phylogenetic trees/networks

Figure 3.17: Example of trees for which the approximation algorithm can output a
solution (left) that has roughly twice as many crossings as the optimal one (right).

We observe that any crossing of that type at the current subproblem was, in
some previous step of the recursion, a crossing between two 1,2-edges or two 2,1-
edges. We can upper-bound the number of these crossings by

(
n12

2

)
+

(
n21

2

)
. Let

ALG be the number of crossings in the solution produced by the algorithm, and
OPT the one in an optimal solution. We have

ALG ≤ OPT +

(
n12

2

)

+

(
n21

2

)

≤ OPT + (n2
12 + n2

21)/2 (3.2)

Since our (sub)trees are complete, we have n10 + n12 + n13 = n01 + n21 + n31 and
n01+n02+n03 = n10+n20+n30. These two equalities yield n12 ≤ n01−n10+n21+n31

and n01−n10 ≤ n20+n30, respectively, and thus we obtain n12 ≤ n20+n30+n21+n31

or, equivalently, n2
12 ≤ n12 · (n20 + n30 + n21 + n31).

It is easy to verify that all the terms on the right-hand side of the last inequality
count crossings that cannot be avoided and must be present in the optimal solution
as well. Hence n2

12 ≤ OPT , and symmetrically n2
21 ≤ OPT . Plugging this into (3.2),

we get ALG ≤ 2 ·OPT . ⊔⊓
The approximation factor of 2 is tight: let n = 4m and let S have leaves ordered

1, . . . , 4m and let T have leaves ordered 1, . . . , m, 3m, . . . , 2m+1, m+1, . . . , 2m, 3m+
1, . . . , 4m. Then our algorithm can construct a drawing with m2+2

(
m
2

)
= m(2m−1)

crossings, while the optimal drawing has only m2 crossings (see Figure 3.17).

Generalization to d-ary trees. The recursive algorithm can be generalized
to complete d-ary trees. The recurrence relation of the algorithm’s running time
changes to T (n) ≤ d · (d!)2 · T (n/d) + O(n) since we need to consider all d! subtree
orderings of both trees, each of which triggers d subinstances of size n/d. Again, by
the master method, this resolves to T (n) = O(n1+2 logd(d!)). At the same time the
approximation factor increases to 1 +

(
d
2

)
.

Maximization version. Instead of the original TL problem, which minimizes the
number of pairs of edges that cross each other, we may consider the dual problem
TL⋆ of maximizing the number of pairs of edges that do not cross. The tasks of

3.4 Comparing two trees 81

finding optimal solutions for these problems are equivalent, but from the perspective
of approximation it makes quite a difference which of the two problems we consider.
Now we do not assume that we draw binary trees. Instead, if an internal node
has more than two children, we assume that we may only choose between a given
permutation of the children and the reverse permutation obtained by flipping the
whole block of children.

In contrast to the TL problem, which is hard to approximate as we have shown
in Theorem 3.4.2, the TL⋆ problem has a constant-factor approximation algorithm.
We show this (see the appendix) by reducing TL⋆ to a constrained version of the
MaxCut problem, which can be approximately solved with a semidefinite program-
ming rounding algorithm by Goemans and Williamson [GW95].

Theorem 3.4.4 There exists a 0.878-approximation algorithm for the TL⋆ problem.

Proof: Fix any drawing of the two trees S and T in an instance of the TL⋆

problem. Any internal node of each of the trees corresponds to a decision variable.
The decision to make in each such node is whether to flip the subtree rooted in that
node or not. We model this situation by a graph; a flip decision corresponds to
deciding to which side of a cut the corresponding vertex is assigned.

For each internal node v of a tree in the instance of TL⋆ the constructed graph
G contains two vertices v and v′. For each pair of edges connecting leaves of the
two trees, there is one edge in G. Let l1 and l2 (r1 and r2) denote the leaves of S
(T) incident to this pair of edges. Let l be the lowest common ancestor of l1 and l2
in S (l = LCA(l1, l2)) and let r = LCA(r1, r2) in T . If the considered pair of edges
crosses in the initial drawing, then we have an edge {l, r} in G. If the pair of edges
does not cross in the initial drawing, then there is an edge {l, r′} in G.

It remains to observe that cuts in G that separate each pair v, v′ correspond to
drawings of S and T in the instance of the TL⋆ problem. Moreover, edges that are
cut in G correspond to the pairs of edges that do not cross in the drawing of the
two trees.

The resulting optimization problem is the MaxResCut problem (that is, the
MaxCut problem with additional constraints forcing certain pairs of vertices to be
separated by the cut) studied by Goemans and Williamson [GW95]. Therefore, we
may use their semidefinite programming rounding algorithm to compute a 0.878-
approximation of the largest constrained cut in the graph G. This cut determines
which of the subtrees in the initial drawing must be flipped to obtain a drawing that
is a 0.878-approximation to TL⋆. ⊔⊓

3.4.4 Fixed-Parameter Tractability

We consider the following parametrized problem. Given an instance 〈S, T 〉 of
the complete binary TL problem and a non-negative integer k, decide whether there
exist drawings of S and T with at most k induced crossings. Our algorithm for
this problem uses a labeling strategy, just as our approximation algorithm in Sec-
tion 3.4.3. However, here we do not select the subinstance that gives the minimum

82 Phylogenetic trees/networks

number of lower-level crossings, but we consider all subinstances and recurs on them.
Thus, our algorithm traverses a search tree of branching factor 4. For the search tree
to have bounded height, we need to ensure that whenever we go to a subinstance,
the parameter value decreases at least by one. For efficient bookkeeping we only
consider current-level crossings. At first sight this seems problematic: if a subin-
stance does not incur any current-level crossings, the parameter will not drop. The
following lemma shows that there is a way out. It says that if there is a subinstance
without current-level crossings, then we can ignore the other three subinstances and
do not have to branch. Note that the lemma does not hold for general binary trees.

Lemma 3.4.5 Given a pair 〈S, T 〉 of two complete binary trees as an instance of
the TL problem and two nodes vS , vT of S, T , respectively, with the same distance
to their respective root. Let (S1, S2) be the subtrees incident to vS and (T1, T2)
the subtrees incident to vT . If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur
any current-level crossings, then any ordering of the leaves of this subinstance does
not have more crossings than the same ordering of the leaves of one of the other
subinstances 〈(S1, S2), (T2, T1)〉, 〈(S2, S1), (T1, T2)〉, or 〈(S2, S1), (T2, T1)〉.
Proof: If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level
crossings, the edges originating from these four subtrees are edges of the types
shown in Figure 3.18a (or the symmetric case with no edges between S2 and T1).
Let n11, n21, n22, l1, l2, r1, r2 be the numbers of edges as in Figure 3.18. Since we
consider complete binary trees we obtain the following equalities: l1 = r1 + n21,
r2 = l2 + n21, and r1 + n11 = l2 + n22.

Take any fixed ordering of the leaves of the subtrees S1, S2, T1, T2. We first
compare the number of crossings of the subinstance 〈(S1, S2), (T1, T2)〉 with the
number of crossings of the subinstance 〈(S2, S1), (T2, T1)〉 in Figure 3.18b. The
subinstance 〈(S1, S2), (T1, T2)〉 can have at most n21(n11 + n22) crossings that do
not occur in 〈(S2, S1), (T2, T1)〉. However, 〈(S2, S1), (T2, T1)〉 has at least l1(l2 +
n21 + n22) + l2n11 + r2(r1 + n21 + n11) + r1n22 crossings that do not appear in
〈(S1, S2), (T1, T2)〉. Inserting the above equalities for l1 and r2 we get (r1 +n21)(l2 +
n21 + n22) + l2n11 + (l2 + n21)(r1 + n21 + n11) + r1n22 ≥ n21(n11 + n22). Thus, the
same ordering of leaves does not give more crossings for 〈(S1, S2), (T1, T2)〉 than it
does for 〈(S2, S1), (T2, T1)〉.

Next, we compare the number of crossings of the subinstance 〈(S1, S2), (T1, T2)〉
with the number of crossings of the subinstance 〈(S1, S2), (T2, T1)〉 in Figure 3.18c.
Now the number of additional crossings of 〈(S1, S2), (T1, T2)〉 is at most n21n22, and
the subinstance 〈(S1, S2), (T2, T1)〉 has at least (r1 +n11)(r2 +n22)+ r2n21 crossings
more. With the equality r1 +n11 = l2 +n22 and the inequality r2 +n22 ≥ n21 we get
(r1 + n11)(r2 + n22) + r2n21 ≥ n22n21. Thus, again 〈(S1, S2), (T1, T2)〉 does not have
more crossings than 〈(S1, S2), (T2, T1)〉 for the same leaf ordering. By symmetric
reasoning the same holds for 〈(S2, S1), (T1, T2)〉. ⊔⊓

At each leaf of our bounded-height search tree, we obtain a certain layout of
〈S, T 〉 and the accumulated number of current-level crossings is at most k. This,
however, does not mean that the total number of crossings is at most k since we

3.4 Comparing two trees 83

(a) 〈(S1, S2), (T1, T2)〉 (b) 〈(S2, S1), (T2, T1)〉 (c) 〈(S1, S2), (T2, T1)〉

Figure 3.18: Edge types and crossings of the instance 〈S, T 〉.

did not keep track of the indeterminate crossings. Therefore, at each leaf we need
to examine how many crossings the corresponding layout has. This can be done
in polynomial time. If one of the leaves yields at most k crossings, the algorithm
outputs “Yes” and the layout; otherwise it outputs “No.” We summarize:

Theorem 3.4.6 The algorithm sketched above solves the parametrized version of
the TL problem in O⋆(4k) time.

3.4.5 Experiments

We have implemented the 2-approximation algorithm of Section 3.4.3 and have
applied it to randomly generated complete and general binary tanglegrams, as well as
to some real-world instances. The algorithms were written in Java and executed in a
SuSE Linux 10.1 environment running on an AMD Opteron 248 2.2GHz system with
4GB RAM. In order to compare the quality of our results to optimal solutions, we
solved the following simple integer quadratic program (IQP) with the mathematical
programming software CPLEX 9.1 on the same Linux system to produce TLs.

We introduce a binary variable xu for each inner node of S ∪ T . If xu = 1,
the two subtrees of u change their order with respect to the input drawing. Let ab
and cd be two inter-tree edges with a, c ∈ S and b, d ∈ T . Let v ∈ S and w ∈ T
be the lowest common ancestors of the leaves a and c, and of b and d, respectively.
Assume that ab and cd cross each other in the original drawing. Then ab and cd
cross each other in the solution encoded by the IQP if and only if xu · xv = 1 or
(1 − xu) · (1 − xv) = 1. Two similar conditions hold in the case that ab and cd do
not cross originally. Thus the total number of edge crossings can be expressed as
the sum of these products for all pairs of edges. The IQP minimizes this sum.

Our 2-approximation algorithm can not only be applied to complete binary tan-
glegrams but also, albeit only as a heuristic, to arbitrary binary tanglegrams. For
arbitrary trees, the way of dividing an instance into two subinstances can lead to
unnecessarily bad estimates of the number of crossings. Figure 3.19 shows an exam-
ple that “fools” our algorithm. It aligns the single leaf attached to the root of each
tree with the larger complete subtree on the other side since this causes no current-
level crossings. All 14 crossings in Figure 3.19b are indeterminate crossings that

84 Phylogenetic trees/networks

the algorithm does not take into account. A small modification of our algorithm
weakens this effect (and yields the optimum solution in the given example). Instead
of always dividing an instance 〈(S1, S2), (T1, T2)〉 into the subinstances 〈S1, T1〉 and
〈S2, T2〉 consisting of the two upper and the two lower subtrees we can also consider
the diagonal subinstances 〈S1, T2〉 and 〈S2, T1〉. We divide the instance diagonally
if n2

11 + n2
22 ≤ n2

12 + n2
21 (using the notation introduced in Section 3.4.3). The

approximation factor still holds in the case of complete trees.
In the following we denote our original algorithm by Algorithm 1 and the mod-

ified algorithm by Algorithm 2. We use n to denote the size of an instance, that is,
the number of inter-tree edges.

We generated four sets (A–D) of random tanglegrams. Set A contains ten pairs of
complete binary trees with random leaf orders for each n = 16, 32, . . . , 512. In set B
we simulated mutations by starting with two identical complete binary trees and
then randomly swapping the positions of up to 20% of the leaves of one tree. Set C
contains ten pairs of trees for each n = 20, 30, . . . , 80. The trees are constructed
from a set of nodes, initially containing the n leaves, by iteratively joining two
random nodes by a new parent node that replaces its children in the set. This
process generates trees that resemble phylogenetic trees or clustering dendrograms.
Set D is similar to set C but again in each tanglegram the second tree is a mutation
of the first tree, where up to 10% of the leaves can swap positions and up to 25%
of the subtrees can reattach to another edge. A new edge is selected in a random
walk starting at the subtree’s old position. Such trees are of interest since real-world
tanglegrams often consist of two rather similar trees.

To each tanglegram we applied Algorithm 1, Algorithm 2, and the IQP, and
recorded the numbers c1, c2, and copt of crossings in respective solutions. We then
computed for each tanglegram the performance ratios c1/copt and c2/copt. The
results are shown in Figure 3.20. For complete binary trees (sets A and B) Algo-
rithms 1 and 2 achieve similar ratios that tend to 1 as the size of the trees grows.
On average both algorithms perform slightly better on mutated trees (B) than on
random trees (A). Note that the absolute number of crossings is lower for mutated
trees; thus a difference of only 1 or 2 to the optimum can already lead to relatively

(a) optimal TL: 1 crossing (b) heuristic TL: 14 crossings

Figure 3.19: Example of a binary tree for which the heuristic performs badly.

3.4 Comparing two trees 85

Figure 3.20: Results of comparing two variants of our 2-approximation. An IQP
yielded the optimum. The plots show medians, first and third quartiles, minimum
and maximum values. Arithmetic means are indicated by crosses.

large ratios for small n.
For general binary trees the performance ratios are no longer upper-bounded by

2 but at least for random trees (C) the ratios were well below 2 for n ≥ 40. As
expected, Algorithm 2 outperforms Algorithm 1. Algorithm 1 does attain perfor-
mance ratios close to 1 for most random instances but it has some outliers as well.
The solutions of Algorithm 2 are not only closer to the optimum, they also spread
much less. For the last set of the mutated trees with relatively fewer crossings in
the optimal solution, the results spread a lot more for both algorithms, but still
Algorithm 2 is generally better with the third quartile of the ratios still below 2.

While the quality of the solutions of Algorithm 2 is better, Algorithm 1 is faster.
This is due to the fact that the depth of the trees influences the running time
exponentially; for complete trees the depth is log n while arbitrary trees can have
depth Θ(n). Going back to the example in Figure 3.19, the recursion in Algorithm 2
goes down the complete heiWheneverght of the tree whereas the original algorithm
only recurses one level. This behavior is also the reason why we could compute
solutions for complete trees with up to 512 leaves (and depth 9) within the same
time as arbitrary trees with 80 leaves. Running-time analysis is not the focus of
this section and our implementations are not optimized for speed. But note that

86 Phylogenetic trees/networks

Figure 3.21: Results of real-world examples.

especially for non-complete trees, Algorithm 2 was by a factor of up to 13 slower
than Algorithm 1 for random tanglegrams (85.2 vs. 6.6 sec for n = 80) and even
up to 57 for mutated instances (337 vs. 6 sec for n = 80). At the same time it
is interesting that the IQP could solve all mutated instances optimally within a
second, and all random instances for n ≤ 60 within 4 minutes. For complete trees
the same observation holds, but for n ≥ 128 the IQP could no longer solve the
instances optimally within a time limit of 4 minutes. Unlike our algorithms, the
IQP is by construction not sensitive to the completeness of the input tanglegram.

Our real-world examples comprise three sets (E–F) of tanglegrams. Set E con-
tains 6 pairs of dendrograms of a hierarchically clustered social network based on
email communication of 21 subjects. Sets F and G contain 6 and 10 pairs of phylo-
genetic trees for 15 species of pocket gophers and 17 species of lice [HSV+94]. Note
that Figure 3.6 in the introduction shows a tanglegram in Set F. While the email
tanglegrams have between 23 and 45 crossings in an optimal solution, the phyloge-
netic trees can be drawn with at most two crossings, most of them even without any
crossings. The results are plotted in Figure 3.21, where in the performance ratio we
added one to both crossing numbers to avoid divisions by zero. On the clustering
data (E) both algorithms perform well, Algorithm 2 slightly better. In set F, all
but one tanglegram can be drawn crossing-free. Algorithm 1 finds the optimum in
two, Algorithm 2 in four of the six cases. In set G, six of the ten TLs can be drawn
without crossings. Algorithm 1 solves five TLs optimally, Algorithm 2 all ten. Each
of the real-world instances was solved within 0.5–2 sec.

To conclude, our experiments showed that on the one hand our 2-approximation
performs very well on complete binary TLs. For general binary TLs the performance
ratios are close to 1 and below 2 in most cases for the modified version of our
algorithm. However, running times for non-complete trees are growing exponentially
with the depth of the trees which makes the algorithms less applicable for very
unbalanced trees. Interestingly, the IQP can quickly find an optimal solution for
such trees with up to 80 leaves.

Acknowledgments. We thank Robert Görke for supplying us with clustering
data, and Markus Völker for implementing both versions of our 2-approximation.

Chapter 4

Nash equilibria

4.1 Introduction

Modern game theory divides games into two categories: transferable utility games
(also called cooperative games), and noncooperative games. In this chapter we study
only the latter group.

A game is defined by a set of players, sets of strategies available for players, and
the payoff functions of the players. A payoff function is a map from the Cartesian
product of the strategy spaces of players to real numbers. It represents the infor-
mation of how much (money, points, etc.) a particular player wins when all the
players choose to play particular strategies. In noncooperative games it is assumed
that players are interested only in maximizing their own payoff, i.e., they cannot
profit from other player’s outcomes.

We will only discuss the single round games (also called one shot games). Players
in these games neither have the information about the history of players’ behavior,
nor can they plan to take recourse actions in the later rounds. Each of the players
must choose one of his/her strategies not knowing the choices of the others. We
assume that the set of available strategies is finite for each player. We also assume
that all the players know the game, in particular, they know the payoff functions of
all the players.

If we restrict our attention to games with only two players, we may simplify
the notation significantly. To represent payoff functions it is now sufficient to give
two matrices R and C. (Noncooperative two-player games are often called bimatrix
games.) Rows of both matrices are indexed by strategies of one player, called row
player, columns are indexed by strategies of the second player, called column player.
Entry rij of matrix R (cij of C) represents the payoff to the row (column) player in
a scenario when the row player plays strategy i and the column player plays strategy
j. For an example of a simple two-player game see Figure 4.1.

In his famous work [Nas51] John Nash introduced a solution concept of Nash
equilibrium for noncooperative games. A Nash equilibrium is a choice of strategies,
one for each player, such that no player has an incentive to deviate (unilaterally).

87

88 Nash equilibria

R =

(
0 5
−1 4

)

C =

(
0 −1
5 4

)

Figure 4.1: A prisoners dilemma game. Each of the players has the choice either to
confess to the police about a together committed crime (a strategy called defection,
as the other prisoner is defeated) or to keep silent (a strategy called cooperation).
A phenomenon captured by this game is that a single player gets a marginal gain
from defeating the opponent, but he looses a lot when being defeated.

Nash proved the existence of an equilibrium for any finite noncooperative game.
Nash equilibrium has been the dominant and most well studied solution concept in
the noncooperative game theory.

It has been a long standing open problem to find algorithms that efficiently
compute Nash equilibria. In a recent series of papers [GP06; DGP06; CD06], it
was established that the problem of computing a Nash equilibrium is complete for
the class PPAD1 even for two-player games. This result reduces computation of
fixed points of continues functions to the problem of finding Nash equilibria. As a
consequence, it is unlikely that efficient algorithms for Nash equilibria exist. Since
then the focus has been on algorithms for approximate equilibria.

By contrast to general games, Nash equilibria are easy to find in zero-sum two-
player games. A zero sum game is a game with the property that the total payoff to
the players is always zero. In two players case, it means that what one of the players
wins is exactly what the other looses. It is not difficult to observe, that finding Nash
equilibria in zero-sum two-player games is as hard as solving linear programs. We
will use this observation in our construction of approximate equilibria for general
(non-zero-sum) games.

In this work we address the notion of additive approximation and consider the
problem of computing approximate Nash equilibria in bimatrix games. Under the
usual assumption that the payoff matrices are normalized to be in [0, 1]n×n (where
n is the number of available pure strategies), we say that a pair of mixed strategies
is an ǫ-Nash equilibrium if no player can gain more than ǫ by unilaterally deviating
to another strategy. In [CDT06] it was proved that it is PPAD-complete to find an
ǫ-Nash equilibrium when ǫ is of the order 1

poly(n) . For constant ǫ however, the prob-

lem is still open. In [LMM03], it was shown that for any constant ǫ > 0, an ǫ-Nash

equilibrium can be computed in subexponential time (nO(log n/ǫ2)). As for polyno-
mial time algorithms, it is fairly simple to obtain a 3/4-approximation (see [KPS06]
for a slightly better result) and even better a 1/2-approximation [DMP06]. An im-

1PPAD is a complexity class introduced by Christos Papadimitriou in 1994 [Pap94]. The name
stands for “Polynomial Parity Arguments on Directed graphs”. It is a class of search problems. By
a specyfic parity argument, we know that each instance has a solution, but exhaustive search for
such a solution would require time that is exponential in the instance size. Note that, in contrast
to the NP problems, in PPAD problems it is not the existance of a solution that is difficult to
determine.

4.2 Notation and Definitions 89

proved approximation with ǫ = 3−
√

5
2 + ζ ≈ 0.38197 + ζ for any ζ > 0 was obtained

by Daskalakis, Mehta and Papadimitriou in [DMP07].

Our results. We provide two new algorithms for approximate Nash equilibria.
The first one achieves exactly the same factor as [DMP07] but with a simpler and
faster technique. The second one, which is an extension of the first and has a
more involved analysis, achieves an improved approximation of 0.36392. Regarding
the running time, both algorithms are based on solving a single linear program in

contrast to [DMP07], which may require to solve up to n
O(1

ζ2)
linear programs for

a (0.38197 + ζ)-approximation.
Our technique is based on the fact that we can compute exact Nash equilibria

for zero-sum games in polynomial time via linear programming. In particular, the
main idea in both of our algorithms is as follows: we first find an equilibrium (say
x∗, y∗) in the zero-sum game R− C, where R and C are the payoff matrices of the
two players. If x∗, y∗ is not a good solution for the original game, then the players
take turns and switch to some appropriately chosen strategies. The probabilities
of switching are chosen such that the final incentives to deviate become the same
for both players. As a result, these probabilities are functions of the parameters
of the problem. The final part of the analysis is to choose these functions so as to
minimize the approximation error. The intuition behind using the auxiliary zero-
sum game R − C is that a unilateral switch from x∗, y∗ that improves the payoff
of one player also improves the payoff of the other player, since x∗, y∗ is chosen to
be an equilibrium with respect to R− C. This allows us to estimate upper bounds
on the final incentive of both players to deviate, which we can later optimize. We
explain this further in the proof of Theorem 4.3.1. We should note here that the use
of zero-sum games has also been considered in [KS96] for obtaining well-supported
approximate equilibria, which is a stronger notion of approximation.

Recently, in a work completed in parallel with ours, Spirakis and Tsaknakis [ST07]
have obtained another algorithm achieving an improved approximation of 0.3393.
This is the currently best known approximation factor for this problem. Their
algorithm is based on a different methodology from ours and requires solving a
polynomial number of linear programs.

Finally in Section 4.6, we show a simple reduction that allows us to compute
approximate equilibria for games with more than two players by using algorithms for
two-player games. We obtain a 0.60205-approximation for three-player games and
0.71533-approximation for four-player games. To the best of our knowledge these
are the first nontrivial polynomial time approximation algorithms for multi-player
games.

4.2 Notation and Definitions

Consider a two person game G, where for simplicity the number of available
(pure) strategies for each player is n. Our results still hold when the players do not

90 Nash equilibria

have the same number of available strategies. We will refer to the two players as
the row and the column player and we will denote their n × n payoff matrices by
R, C respectively. Hence, if the row player chooses strategy i and the column player
chooses strategy j, the payoffs are Rij and Cij respectively.

A mixed strategy for a player is a probability distribution over the set of his pure
strategies and will be represented by a vector x = (x1, x2, ..., xn)T , where xi ≥ 0
and

∑
xi = 1. Here xi is the probability that the player will choose his ith pure

strategy. The support of x is the set of pure strategies that are used with positive
probability. The ith pure strategy will be represented by the unit vector ei, that has
1 in the ith coordinate and 0 elsewhere. For a mixed strategy pair x, y, the payoff
to the row player is the expected value of a random variable which is equal to Rij

with probability xiyj . Therefore the payoff to the row player is xT Ry. Similarly the
payoff to the column player is xT Cy.

A Nash equilibrium [Nas51] is a pair of strategies x∗, y∗ such that no player has
an incentive to deviate unilaterally. Since mixed strategies are convex combinations
of pure strategies, in the definition of the Nash equilibrium, it suffices to consider
only deviations to pure strategies:

Definition 4.2.1 A pair of strategies x∗, y∗ is a Nash equilibrium if the following
two conditions hold:

(i) For every pure strategy ei of the row player, eT
i Ry∗ ≤ (x∗)T Ry∗.

(ii) For every pure strategy ei of the column player, (x∗)T Cei ≤ (x∗)T Cy∗.

Assuming that we normalize the entries of the payoff matrices so that they all
lie in [0, 1], we can define the notion of an additive ǫ-approximate Nash equilibrium
(or simply ǫ-Nash equilibrium) as follows:

Definition 4.2.2 For any ǫ > 0, a pair of strategies x∗, y∗ is an ǫ-Nash equilibrium
if the following two conditions hold:

(i) For every pure strategy ei of the row player, eT
i Ry∗ ≤ (x∗)T Ry∗ + ǫ.

(ii) For every pure strategy ei of the column player, (x∗)T Cei ≤ (x∗)T Cy∗ + ǫ.

In other words, no player will gain more than ǫ by unilaterally deviating to an-
other strategy. Other approximation concepts have also been studied. In particular,
[DGP06] introduced the stronger notion of ǫ-well-supported equilibria, in which ev-
ery pure strategy in the support of the chosen strategies should be an approximate
best response to the strategies chosen for the other players. Another stronger notion
of approximation is that of being geometrically close to an exact Nash equilibrium
and was studied in [EY07]. We do not consider these concepts here. For more on
these concepts, we refer the reader to [KS96] and [EY07].

4.3 A (3−
√

5
2)-approximation 91

4.3 A (3−
√

5
2

)-approximation

In this section, we provide an algorithm that achieves exactly the same factor
as in [DMP07], which is (3 −

√
5)/2, but by using a different and simpler method.

In the next section we show how to modify our algorithm in order to improve the
approximation.

Given a game G = (R, C), where the entries of R and C are in [0, 1], let
A = R − C. Our algorithm is based on solving the zero-sum game (A,−A) and
then modifying the solution appropriately, if it does not provide a good approxi-
mation. It is well known that zero-sum games can be solved efficiently using linear
programming. The decision on when to modify the zero-sum solution depends on a
parameter of the algorithm α ∈ [0, 1]. We first describe the algorithm parametrically
and then show how to obtain the desired approximation.
Algorithm 1
Let α ∈ [0, 1] be a parameter of the algorithm.

1. Compute an equilibrium (x∗, y∗) for the zero-sum game defined by the matrix
A = R− C.

2. Let g1, g2 be the incentive to deviate for the row and column player respec-
tively if they play (x∗, y∗) in the original game (R, C), i.e.,
g1 = maxi=1,...,n eT

i Ry∗ − (x∗)T Ry∗ and g2 = maxi=1,...,n (x∗)T Cei − (x∗)T Cy∗.
Without loss of generality, assume, that g1 ≥ g2 (the statement of the algo-
rithm would be completely symmetrical if g1 < g2).

3. Let r1 ∈ argmaxei
eT

i Ry∗ be an optimal response of the row player to the
strategy y∗. Let b2 ∈ argmaxei

rT
1 Cei be an optimal response of the column

player to the strategy r1.

4. Output the following pair of strategies, (x̂, ŷ), depending on the value of g1

with respect to the value of α:

(x̂, ŷ) =

{
(x∗, y∗), if g1 ≤ α
(r1, (1 − δ2) · y∗ + δ2 · b2), otherwise

where δ2 = 1−g1

2−g1
.

Theorem 4.3.1 Algorithm 1 outputs a max{α, 1−α
2−α}-approximate Nash equilibrium.

Proof: If g1 ≤ α (recall that we assumed g1 ≥ g2), then clearly (x∗, y∗) is an
α-approximate Nash equilibrium.

Suppose g1 > α. We will estimate the satisfaction of each player separately.
Suppose b1 is an optimal response for the row player to ŷ, i.e., b1 ∈ argmaxei

eT
i Rŷ.

The row player plays r1, which is a best response to y∗. Hence b1 can be better
than r1 only when the column player plays b2, which happens with probability δ2.

92 Nash equilibria

Formally, the amount that the row player can earn by switching is at most:

bT
1 Rŷ − rT

1 Rŷ = (1 − δ2)(bT
1 Ry∗ − rT

1 Ry∗) + δ2(bT
1 Rb2 − rT

1 Rb2)

≤ δ2 · bT
1 Rb2 ≤ δ2 = 1−g1

2−g1

The first inequality above comes from the fact that r1 is a best response to y∗

and the second comes from our assumption that the entries of R and C are in [0, 1].
Consider the column player. The critical observation, which is also the reason

we started with the zero-sum game (R − C, C − R), is that the column player also
benefits (when he plays y∗) from the switch of the row player from x∗ to r1. In
particular, since (x∗, y∗) is an equilibrium for the zero-sum game (R − C, C − R),
the following inequalities hold:

(x∗)T Rej − (x∗)T Cej ≥ (x∗)T Ry∗ − (x∗)T Cy∗ ≥ eT
i Ry∗ − eT

i Cy∗, ∀ i, j = 1, ..., n
(4.1)

If ei = r1, we get from (4.1) that rT
1 Cy∗ ≥ rT

1 Ry∗ − (x∗)T Ry∗ + (x∗)T Cy∗. But
we know that rT

1 Ry∗ − (x∗)T Ry∗ = g1, which implies:

rT
1 Cy∗ ≥ g1 + (x∗)T Cy∗ ≥ g1 (4.2)

Inequality (4.2) shows that any deviation of the row player from x∗, y∗, that improves
his payoff, guarantees at least the same gain to the column player as well. We can
now use the lower bound of (4.2) to estimate the incentive of the column player to
change his strategy. He plays ŷ while he would prefer to play an optimal response
to x̂ which is b2. Since b2 is played with probability δ2, by switching he could earn:

x̂T Cb2 − x̂T Cŷ = rT
1 Cb2 − rT

1 Cŷ
= rT

1 Cb2 − ((1 − δ2)rT
1 Cy∗ − δ2 · rT

1 Cb2)
= (1− δ2)(rT

1 Cb2 − rT
1 Cy∗)

≤ (1− δ2)(1 − g1) = δ2 = 1−g1

2−g1

The last inequality above follows from (4.2). The probability δ2 was chosen so as
to equalize the incentives of the two players to deviate in the case that g1 > α. It
is now easy to check that the function (1 − g1)/(2 − g1) is decreasing, hence the
incentive for both players to deviate is at most (1−α)/(2−α). Combined with the
case when g1 ≤ α, we get a max{α, 1−α

2−α}-approximate equilibrium.

⊔⊓
In order to optimize the approximation factor of Algorithm 1, we only need to

equate the two terms, α and 1−α
2−α , which then gives:

α2 − 3α + 1 = 0 (4.3)

The solution to (4.3) in the interval [0, 1] is α = 3−
√

5
2 ≈ 0.38197. Note that the

approximation ratio of our algorithm may be expressed as α = 1− 1/φ, where φ is

4.4 An Improved Approximation 93

the golden ratio2. Since α is an irrational number, we need to ensure that we can
still do the comparison g1 ≤ α to be able to run Algorithm 1 (note that this is the
only point where the algorithm uses the value of α). But to test g1 ≤ 3 −

√
5/2,

it suffices to test if (3 − 2g1)2 ≥ 5 and clearly g1 is a polynomially sized rational
number. Concerning complexity, zero-sum games can be solved in polynomial time
by linear programming. All the other steps of the algorithm require only polynomial
time. Therefore, Theorem 4.3.1 implies:

Corollary 4.3.2 We can compute, in polynomial time, a 3−
√

5
2 -approximate Nash

equilibrium for bimatrix games.

4.4 An Improved Approximation

In this section we obtain a better approximation of 1/2− 1/(3
√

6) ≈ 0.36392 by
essentially proposing a different solution in the cases where Algorithm 1 approaches
its worst case guarantee. We first give some motivation for the new algorithm.
From the analysis of Algorithm 1, one can easily check that as long as g1 belongs
to [0, 1/3]∪ [1/2, 1], we can have a 1/3-approximation if we run the algorithm with
any α ∈ [1/3, 1/2). Therefore, the bottleneck for getting a better guarantee is when
the maximum incentive to deviate is in [1/3, 1/2]. In this case, we will change the
algorithm so that the row player will play a mix of r1 and x∗. Note that in Algorithm
1, the probability of playing r1 is either 0 or 1 depending on the value of g1. This
probability will now be a more complicated function of g1, derived from a certain
optimization problem. As for the column player, we again compute b2 which is now
the best response to the mixture of r1 and x∗- not only to r1. Then we compute an
appropriate mixture of b2 and y∗. Again, the probability of playing b2 is chosen so
as to equate the incentives of the two players to defect. Finally we should note that
the modification of the algorithm will not be on the interval [1/3, 1/2] but instead
on a subinterval of the form [1/3, β], where β is derived from the optimization that
we perform in our analysis.
Algorithm 2

1. Compute an equilibrium (x∗, y∗) for the zero-sum game defined by the matrix
A = R− C.

2. As in Algorithm 1, let g1, g2 be the incentive to deviate for the row and col-
umn player respectively if they play (x∗, y∗) in the original game, i.e., g1 =
maxi=1,...,n eT

i Ry∗ − (x∗)T Ry∗ and g2 = maxi=1,...,n (x∗)T Cei − (x∗)T Cy∗.
Without loss of generality, assume, that g1 ≥ g2.

3. Let r1 ∈ argmaxei
eT

i Ry∗ be an optimal response of the row player to the
strategy y∗.

2The golden ratio is a solution (in positive variables) of φ = a+b
a

= a
b
. The numerical value of

the ratio is φ = 1+
√

5

2
≈ 1.6180339887.

94 Nash equilibria

4. The row player will play a mixture of r1 and x∗, where the probability of
playing r1 is given by:

δ1 = δ1(g1) =







0, if g1 ∈ [0, 1/3]
∆1(g1), if g1 ∈ (1/3, β]
1, otherwise

where ∆1(g1) = (1− g1)
(

−1 +
√

1 + 1
1−2g1

− 1
g1

)

.

5. Let b2 be an optimal response of the column player to ((1− δ1)x∗ + δ1r1), i.e.,
b2 ∈ argmaxei

((1− δ1)x∗ + δ1r1)T Cei. Let also h2 = (x∗)T Cb2 − (x∗)T Cy∗,
i.e., the gain from switching to b2 if the row player plays x∗.

6. The column player will play a mixture of b2 and y∗, where the probability of
playing b2 is given by:

δ2 = δ2(δ1, g1, h2) =







0, if g1 ∈ [0, 1/3]
max{0, ∆2(δ1, g1, h2)}, if g1 ∈ (1/3, β]
1−g1

2−g1
, otherwise

where ∆2(δ1, g1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1
.

7. Output (x̂, ŷ) = ((1− δ1)x∗ + δ1r1, (1 − δ2)y∗ + δ2b2).

In our analysis, we will take β to be the solution to ∆1(g1) = 1 in [1/3, 1/2],
which coincides with the root of the polynomial x3 − x2 − 2x + 1 in that interval
and it is:

β =
1

3
+

√
7

3
cos

(
1

3
tan−1

(

3
√

3
))

−
√

21

3
sin

(
1

3
tan−1

(

3
√

3
))

(4.4)

Calculations show 0.445041 ≤ β ≤ 0.445042. The emergence of β in our analysis is
explained in Lemma 4.4.2.

Remark 4.4.1 The actual probabilities δ1 and δ2 can be irrational numbers (and
so is β). However, for any constant ǫ > 0, we can take approximations of high
enough accuracy of all the square roots that are involved in the calculations so that
the final loss in the approximation ratio will be at most ǫ. From now on, for ease of
exposition, we will carry out the analysis of Algorithm 2, as if we can compute all
the expressions involved exactly.

Note that for g1 ∈ [13 , 1
2] and δ1 ∈ [0, 1] the denominators that appear in the

functions ∆1, ∆2 do not vanish. The following lemma ensures that x̂ is a valid
strategy. It will be proved in Section 4.5. That ŷ is also a valid strategy is proved
in Lemma 4.4.3.

Lemma 4.4.2 For g1 ∈ (1/3, β] we have ∆1(g1) ∈ [0, 1].

4.4 An Improved Approximation 95

Now we bound the incentives of players to deviate. Let F be the following
function:

F (δ1, g1, h2) :=
(δ1 (1− g1 − h2) + h2) (1− (1− δ1)h2)

1 + δ1 − g1
(4.5)

Lemma 4.4.3 The pair of strategies (x̂, ŷ) is a λ-Nash equilibrium for game (R, C)
with

λ ≤







g1 if g1 ≤ 1/3

maxh2∈[0,g1]

{
F (δ1, g1, h2) if ∆2(δ1, g1, h2) ≥ 0
(1− δ1)g1 if ∆2(δ1, g1, h2) < 0

if g1 ∈ (1/3, β]

1−g1

2−g1
if g1 > β

(4.6)

Proof: In the case that g1 ∈ [0, 1/3] ∪ [β, 1], the answer essentially follows from
the proof of Theorem 4.3.1. The interesting case is when g1 ∈ [1/3, β].

Case 1: g1 ≤ 1/3
(x̂, ŷ) = (x∗, y∗) which is by definition a g1-approximate Nash equilibrium.

Case 2a: g1 ∈ (1/3, β] and ∆2(δ1, g1, h2) ≥ 0
Recall that Lemma 4.4.2 implies x̂ is a valid strategy in Case 2. Observe, that

δ2(g1, δ1, h2) = ∆2(g1, δ1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1
≤ 1 is a valid probability, and there-

fore ŷ is a valid mixed strategy too.
We estimate the incentive for the row player to deviate from x̂. If b1 is an optimal

response to ŷ, then the gain from switching is at most:

bT
1 Rŷ − x̂T Rŷ = (b1 − x̂)T Rŷ =

= δ2(b1 − x̂)T Rb2 +(1− δ2)(b1 − x̂)T Ry∗

≤ δ2(1− x̂T Rb2) +(1− δ2)(b1 − x̂)T Ry∗

= δ2(1− δ1r
T
1 Rb2 − (1− δ1)(x∗)T Rb2) +(1− δ2)(δ1 (b1 − r1)T Ry∗

+(1− δ1)(b1 − x∗)T Ry∗)

By (4.1) we have (x∗)T Rb2 ≥ (x∗)T Cb2− (x∗)T Cy∗ + (x∗)T Ry∗ ≥ h2. Also r1 is
a best response to y∗, hence (b1− r1)T Ry∗ ≤ 0 and (b1− x∗)T Ry∗ ≤ g1. Therefore,
the gain from deviating is at most:

bT
1 Rŷ − x̂T Rŷ ≤ δ2(1− (1− δ1)h2) + (1− δ2)(1 − δ1)g1 = EST1.

We now estimate the incentive of the column player to switch. The best response
to x̂ for the column player is b2, which is played with probability δ2. Thus the
incentive to deviate from ŷ is:

x̂T Cb2 − x̂T Cŷ = (1− δ2)(x̂T Cb2 − x̂T Cy∗)
= (1− δ2)((1 − δ1)((x∗)T Cb2 − (x∗)T Cy∗) + δ1(rT

1 Cb2 − rT
1 Cy∗))

≤ (1− δ2)((1 − δ1)h2 + δ1(1− g1)) = EST2

96 Nash equilibria

The last inequality follows from the definitions of g1 and h2. It remains to observe

that our choice of δ2(δ1, g1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1
makes these estimates both equal

to F (δ1, g1, h2):

EST1 = EST2 =
(δ1 (1− g1 − h2) + h2) (1− (1 − δ1)h2)

δ1 + 1− g1
= F (δ1, g1, h2).

Case 2b: g1 ∈ (1/3, β] and ∆2(δ1, g1, h2) < 0
Then ŷ = y∗ and the best response of the row player is r1. Hence he can improve
his payoff by at most

rT
1 Ry∗ − x̂T Ry∗ = rT

1 Ry∗ − (δ1 · rT
1 Ry∗ + (1− δ1)((x∗)T Ry∗)) = (1− δ1)g1

while the column player can improve by at most

x̂T Cb2 − x̂T Cy∗ = δ1(rT
1 Cb2 − rT

1 Cy∗) + (1 − δ1)((x∗)T Cb2 − (x∗)T Cy∗)

By (4.1) we can see that rT
1 Cy∗ ≥ g1. Hence

x̂T Cb2 − x̂T Cy∗ ≤ δ1(1− g1) + (1− δ1)h2

It is easy to check that ∆2(g1, δ1, h2) < 0 implies δ1(1 − g1) + (1 − δ1)h2 <
(1 − δ1)g1. Therefore the maximum incentive to deviate in this case is at most
(1− δ1)g1. Combining Case 2a and Case 2b, and taking the worst possible case over
the range of h2 (recall that h2 ≤ g2 ≤ g1), we get precisely the expression in the
statement of Lemma 4.4.3.

Case 3: g1 > β
Notice that in this case, the players are playing the same strategies as in Algorithm
1, when g1 ≥ α. By the analysis in the proof of Theorem 4.3.1, we see that the
maximum incentive is (1− g1)/(2− g1). ⊔⊓

We will now argue that our choice of ∆1(g1) is optimal for any g1 ∈ (1
3 , β] and

that the expression (4.6) from Lemma 4.4.3 achieves an improvement over Algo-
rithm 1. For this, we need to find the worst possible approximation in Case 2 of
Lemma 4.4.3. In particular, we need to look at the maxima of the following function:

P (g1) := min
δ1∈[0,1]

max
h2∈[0,g1]

{
F (δ1, g1, h2) if ∆2(δ1, g1, h2) ≥ 0
(1− δ1)g1 if ∆2(δ1, g1, h2) < 0

(4.7)

Lemma 4.4.4 The pair (δ1, h2) = (∆1(g1), g1) is an optimal solution for the ex-
pression P (g1). Furthermore, the maximum of P (g1) over g1 is 1

2 − 1
3
√

6
, i.e., the

following holds

P (g1) = F (∆1(g1), g1, g1) ∀g1 ∈ [
1

3
,

1

2
] (4.8)

max
g1∈[1

3
,β]

P (g1) =
1

2
− 1

3
√

6
≤ 0.36392. (4.9)

4.4 An Improved Approximation 97

β1/3 g1

3−
√

5

2

1
2
− 1

3
√

6

F (∆(g1),g1,g1)
g1

1−g1
2−g1

� case 1 -� case 2 -� case 3 -

0.2 0.3 0.4 0.5

Figure 4.2: How the approximation factor depends on g1.

The lemma will be proved in Section 4.5. Given Remark 4.4.1, we are now ready
to conclude with the following:

Theorem 4.4.5 For any ǫ > 0, Algorithm 2 computes a (0.36392+ ǫ)-approximate
Nash equilibrium.

Proof: By Lemma 4.4.3 the output of Algorithm 2, (x̂, ŷ) is a pair of mixed
strategies for players, such that the incentive of players to deviate is bounded
by (4.6). By Lemma 4.4.4 we have that for g1 ∈ (1/3, β] the expression (4.6) is
bounded by 1

2 − 1
3
√

6
≤ 0.36392. It is easy to observe, that for other values of

g1 the expression (4.6) takes only smaller values. In particular, it is at most 1/3
when g1 ∈ [0, 1/3] and at most 1−β

2−β ≈ 0.3569 when g1 > β. The dependence of the

approximation on the variable g1 is presented in Figure 4.2. ⊔⊓

A Tight Example: The analysis that we have presented is tight. Tracing all
inequalities used, we constructed the following worst-case example, on which Algo-
rithm 2 yields a 0.36392-approximate equilibrium:

R =





0 α α
α 0 1
α 1 0



 C =





0 α α
α 1 1/2
α 1/2 1



 where α = 1/
√

6.

98 Nash equilibria

4.5 Proof of Lemma 4.4.2 and Lemma 4.4.4

Proof of Lemma 4.4.2:
We show that ∆1 maps [1/3, β] into [0, 1], where ∆1 (see Algorithm 2) is defined

as

∆1(g1) := (1 − g1)

(

−1 +

√

1 +
1

1− 2g1
− 1

g1

)

.

It is easy to check that ∆1(1/3) = 0. We will show that ∆1 is real-valued and
monotone increasing on the interval [1/3, 1/2). Then we show that 1/3 < β < 1/2,
and ∆1(β) = 1.

To check that ∆1(g1) takes real values on [1/3, 1/2), it is easy to verify that the
radicand, i.e., the expression under the square root, is nonnegative in this domain.

(

1 +
1

1− 2g1
− 1

g1

)

≥ 1 for all g1 ∈ [1/3, 1/2). (4.10)

To check the monotonicity of ∆1(g1), we calculate ∆′
1(g1) and find

∆′
1(g1) = 1+

1− 3g1 − 2g2
1 + 14g3

1 − 8g4
1

2(1− 2g1)2g2
1

√

1 + 1
1−2g1

− 1
g1

> 0 for all g1 ∈ [1/3, 1/2). (4.11)

The inequality in (4.11) is obtained as follows: Inequality (4.10) shows that the
radicand in (4.11) is strictly positive on [1/3, 1/2). So the denominator appearing
in ∆′

1(g1) is real and positive. For the numerator appearing in ∆′
1(g1) the following

estimation holds for all g1 ∈ [1/3, 1/2):

1− 3g1 − 2g2
1 + 14g3

1 − 8g4
1 = 1

2 (3 + g1 +(1− g1)(4g1 + 1)(−2 + (1− 2g1)2))
≥ 1

2 (3 + g1 +(1− g1)(4g1 + 1)(−2))
= 1

2

(
(1− 5

2g1)2 + 7
4g2

1

)
> 0.

Here the first inequality holds since g1 ∈ [1/3, 1/2) implies (1 − g1)(4g1 + 1) > 0.
This proves (4.11) showing that ∆1 is strictly increasing on the interval [1/3, 1/2).

Now we calculate g ∈ [1/3, 1/2) for which ∆1(g) = 1 holds. In the following let
x ∈ [1/3, 1/2). This implies 0 < 2 − x and 0 < 1 − x, which together with (4.10)
gives rise to the second equivalence in the following:

∆1(x) = 1 ⇔ (2− x) = (1− x)
√

1 + 1
1−2x − 1

x

⇔ (2− x)2 = (1− x)
2
(

1 + 1
1−2x − 1

x

)

⇔ 1− 2x− x2 + x3 = 0.

The polynomial p(x) := 1− 2x− x2 + x3 has exactly one zero in [1/3, 1/2], since p
is monotone decreasing on this domain: One calculates p′(x) = −2x− 2(1− 3x2) ≤
−2x < 0 for all x ∈ [1/3, 1/2]. Moreover one has p(1/3) = 7/27 and p(1/2) = −1/8,
showing that p has a root within the interval.

4.5 Proof of Lemma 4.4.2 and Lemma 4.4.4 99

Substituting x = 1
3

(
1 +
√

7 cos (α)−
√

21 sin (α)
)

and α = arctan(t)/3 leads to

1− 2x− x2 + x3 =
7

27

(

1−
√

28 cos(3α)
)

=
7

27

(

1−
√

1 + 27√
1 + t2

)

where the last term is zero for t = 3
√

3. Resubstitution shows that p(β) = 0 holds
for

β =
1

3

(

1 +
√

7 cos (α)−
√

21 sin (α)
)

where α = 1
3 arctan

(
3
√

3
)
. Taylor expansion of the corresponding terms leads to

0.445041 < β < 0.445042, proving β ∈ [1/3, 1/2). This shows ∆1(β) = 1, which
proves the lemma. ⊔⊓

In the proof of Lemma 4.4.4 we will make repeated use of the following simple
observation:

Observation 1 Let a, b ∈ R, a, b ≥ 0 then a− b ≥ 0⇔ a2 − b2 ≥ 0.

We solved the univariate minimization problems that arise in Lemma 4.4.4 in
the classic manner, eventually leading to the minimizer ∆1(g). This procedure is
lengthy, so here we give an uninspiring but shorter proof. The proof is based on the
following Lemma:

Lemma 4.5.1 For every pair (g, δ) ∈ [1/3, β]× [0, 1] the following holds

F (δ, g, g) = max
h∈[0,g]

{
F (δ, g, h) if ∆2(δ, g, h) ≥ 0
(1− δ)g if ∆2(δ, g, h) < 0

(4.12)

F (∆1(g), g, g) = min
d∈[0,1]

F (d, g, g). (4.13)

We postpone the proof of Lemma 4.5.1 to the end of this Section.
Proof of Lemma 4.4.4: Combining (4.12) and (4.13) from Lemma 4.5.1 we
obtain

F (∆1(g1), g1, g1) = min
δ1∈[0,1]

max
h2∈[0,g1]

{
F (δ1, g1, h2) if ∆2(δ1, g1, h2) ≥ 0
(1− δ1)g1 if ∆2(δ1, g1, h2) < 0.

For ease of exposition, we drop the subscripts of the variables from now on. Hence
we are left to prove maxg∈[1

3
,β] F (∆1(g), g, g) = 1

2 − 1
3
√

6
≤ 0.36392 where

F (∆1(g), g, g) =

1
4 − 1

4 (1− 2g)(3− 2g)(4g − 1) + 2(1− g)
√

g(1− 2g)(−1 + 4g − 2g2)

It is easy to check that (4.10) implies that the radicand g(1− 2g)(−1 + 4g− 2g2) is
nonnegative for all g ∈ [1/3, β]. We now prove that the maximum of F (∆(g), g, g)
on [13 , β] is assumed for g = 1/

√
6 : Straightforward calculation leads to

F∗ := F
(

∆(1/
√

6) , 1/
√

6 , 1/
√

6
)

=
1

2
− 1

3
√

6
.

100 Nash equilibria

Fixing g ∈ [1/3, β] (arbitrarily), one finds:

F∗ − F (∆1(g), g, g) =

=
1

4
− 1

3
√

6
+

1

4
(1− 2g)(3− 2g)(4g − 1)

︸ ︷︷ ︸

− 2 (1− g)
√

g(1− 2g)(−1 + 4g − 2g2)
︸ ︷︷ ︸

.

≥ 0 (∗) ≥ 0 (∗∗)

Here (∗) and (∗∗) are implied by the choice of g, i.e., (3−2g) ≥ 2(1−g) ≥ (1−2g) ≥ 0,
and 4g − 1 ≥ 1/3 > 0 hold. Finally, since

√
6 > 2 we have 1

4 − 1
3
√

6
> 1

12 > 0.

The inequalities in (∗) and (∗∗) together with Observation 1 lead to the equiva-
lence

F∗ − F (∆1(g), g, g) ≥ 0 ⇔
(

1

4
− 1

3
√

6
+

1

4
(1 − 2g)(3− 2g)(4g − 1)

)2

− 4(1− g)2
(
g(1− 2g)(−1 + 4g − 2g2)

)

︸ ︷︷ ︸

≥ 0.

=
(

11
18 + 2

3
√

6
(3 − g) + (1− g)2

) (

g − 1√
6

)2

Here the second inequality holds for the chosen g, since the term can be reformulated
as shown under the brace, where (3 − g) > 0 holds by the restriction g ∈ [1/3, β].

Thus we showed F∗ = F (∆1(1/
√

6), 1/
√

6, 1/
√

6) ≥ F (∆1(g), g, g), proving the
lemma, since g ∈ [1/3, β] was chosen arbitrarily and 1/

√
6 ∈ [1/3, β] is implied by

0.40 ≤ 1/
√

6 ≤ 0.41 < β.
⊔⊓

It now remains to prove Lemma 4.5.1.
Proof of Lemma 4.5.1:

Fix some pair (g, δ) ∈ [1/3, β]× [0, 1]. We rewrite (4.12) as

F (δ, g, g) ≤
(

max
h∈[0,g]

{
F (δ, g, h) if ∆2(δ, g, h) ≥ 0
(1− δ)g if ∆2(δ, g, h) < 0

)

≤ max
h∈[0,g]

F (δ, g, g)

(4.14)
and prove it as follows: A brief calculation, together with (1 − g) > 0, lead to
∆2(δ, g, g) = (1− g)δ/(1− g+ δ) ≥ 0. So there is a h∗ ∈ [0, g], namely h∗ := g, such
that ∆2(δ, g, h∗) ≥ 0. This implies the first inequality in (4.14).

Observe that to prove the second inequality in (4.14), it suffices to show that

F (δ, g, g) ≥ (1− δ)g and F (δ, g, g) ≥ F (δ, g, h) for all h ∈ [0, g] (4.15)

both hold – independently of the value of ∆2. Quick calculation proves the first
inequality of (4.15): Recall that the choice on (g, δ) implies (1 − g) ≥ 0, 2δg ≥ 0,
and (1− 2g) ≥ 0, yielding

F (δ, g, g)− (1 − δ)g =
(1− g) δ

(1− g) + δ
(2δg + (1− 2g)) ≥ 0.

4.6 Games with more than 2 players 101

To obtain the second inequality of (4.15), we show that for the chosen δ, g, the
function F (δ, g, h) is monotone non-decreasing on h ∈ [0, g]: Recalling h ≤ g ≤ 1/2
we find (1− 2h) ≥ 0, implying

dF (δ, g, h)

dh
=

(1− 2h)(1− δ)2 + gδ(1− δ)

(1− g) + δ
≥ 0.

This finally proves (4.15), and thus the second inequality in (4.14), concluding the
proof of (4.12).

To prove (4.13) fix some d ∈ [0, 1] arbitrarily and define p(g) := g(1− 2g)(−1 +
4g − 2g2), which is the radicand appearing in F (∆1(g), g, g). A Bbief calculation
leads to

(F (d, g, g)− F (∆1(g), g, g)) (1− g + d) =
(
(4g −1)(1−g)3 + 2g(1−2g)(1−g)d + g(1−2g)d2

)

︸ ︷︷ ︸
− 2(1− g + d)(1 − g)

√

p(g)
︸ ︷︷ ︸

.

≥ 0 (⋆) ≥ 0 (⋆⋆)

To obtain (⋆), recall that 1/3 < β < 1/2 and observe that the restrictions on g, d
imply g, d ≥ 0 as well as (4g − 1) ≥ 0, (1 − g) ≥ 0, and (1 − 2g) ≥ 0. Moreover
we have (1 − g + d) > (1 − g) ≥ 0, showing (⋆⋆). Recall also that (4.10) implies
that p(g) ≥ 0 for the chosen g. Hence, by exploiting (1− g + d) > 0 and Fact 1, we
obtain:

F (d, g, g)− F (∆1(g), g, g) ≥ 0

⇔
(
(4g −1)(1−g)3 + 2g(1−2g)(1−g)d + g(1−2g)d2

)2 − 4(1− g + d)2(1− g)2p(g) ≥ 0
⇔

(
(1 −3g)(1−g)2 + 2g(1−2g)(1−g)d + g(1−2g)d2

)2 ≥ 0.

The last inequality is trivially true, which finally proves (4.13) since (g, d) ∈ [1/3, β]×
[0, 1] were chosen arbitrarily.

⊔⊓

4.6 Games with more than 2 players

In this section we consider games with more than two players. A Nash equi-
librium for multi-player games is defined in the same way as for two-player games.
It is a choice of strategies such that no agent has a unilateral incentive to devi-
ate. We show now how the simple 1/2-approximation algorithm for two players
by Daskalakis et al. [DMP06] may be generalized to a procedure that reduces the
number of players in the computation of an approximate equilibrium.

Lemma 4.6.1 Given an α-approximation algorithm for games with k − 1 players,
we can construct a 1

2−α -approximation algorithm for k-player games.

102 Nash equilibria

Proof: Suppose we are given a game with k players. Pick any player, e.g. the
first player, and fix any strategy x1 for this player. If the first player’s strategy
is fixed at x1, the game becomes a k − 1 player game. Hence we may use the α-
approximation algorithm to obtain an α-approximate equilibrium (x2, . . . , xk) for
the players 2, ..., k in this restricted game. Finally, player 1 computes his optimal
response r1 to (x2, . . . , xk) and plays a mix of his original strategy x1 and the new
strategy r1. Let δ be the probability that player 1 plays r1. Hence the output of
this construction is ((1− δ)x1 + δr1, x2, ..., xk).

We will now measure the quality of this construction. The incentive to deviate
for player 1 may be bounded by 1− δ. For the other players the incentive may be
bounded by α(1− δ) + δ. By equalizing the incentives we get δ = 1−α

2−α , which gives

the upper bound for the incentive 1− δ = 1
2−α . ⊔⊓

We may now repeatedly apply Lemma 4.6.1 combined with the 0.3393-approxi-
mation for two-player games of Spirakis and Tsaknakis [ST07] to get constant factor
approximations for any fixed number of players. In particular, we get 0.60205-
approximation for three player games and 0.71533-approximation for four-player
games. To the best of our knowledge this is the first nontrivial polynomial time
approximation for multiplayer normal form games.

4.7 Discussion

In general, our algorithms produce solutions with large support. This is to no
surprise, as implied by negative results on the existence of approximate equilibrium
strategies with small support [Alt94; FNS07].

The major remaining open question here is whether a polynomial time algorithm
for any constant ǫ > 0 is possible. It would be interesting to investigate if we can
exploit further the use of zero-sum games to obtain better approximations. We
would also like to study if our techniques can be used for the stronger notions of
approximation discussed in [KS96] and [EY07].

Chapter 5

Set Multicover

5.1 Preliminaries

In this chapter, we discuss the problem of covering elements with sets. The
problem of covering each element at least once is the classical Set Cover problem.
We show that the covering problem becomes easier for approximation if we require
that each of the elements is covered many times.

The problem we study can be thought of as an abstraction of the following
situation. Suppose we need to provide a certain service at a number of sites, e.g.,
we need to locate ambulances, so that a number of locations can be reached within a
certain driving time. In this example, the multiple coverage requirement corresponds
to the reliability of the service or, in other words, to the robustness of the rescue
system. In such terms, we may interpret the results presented here as follows.
Providing logarithmic (in the number of nodes to serve) robustness in the system is
a problem for which we may find constant factor approximations. Moreover, if the
single coverage version has a large integrality gap, then we may compute a solution
for the multiple coverage version that is not much more expensive than the optimal
single coverage. Finally, because approximating the single coverage is a difficult
problem, the theoretical bounds on the number of sets (ambulances) used in the
two versions of the problem are not much different, i.e., they differ by at most a
multiplicative constant.

Our technique is based on adding sets to the current solution until the proper
level of coverage is achieved. The choice of a set to be added is based on a specific
weight function that takes into account the previously chosen sets. The construc-
tion of the weight function guarantees efficient usage of sets if the initial coverage
requirement is big enough.

The chapter is organized as follows. First, we discuss the Set Cover and the Set
Multicover problems. In Section 5.3, we present the main technique in a form of
a strategy for a certain game. Then we apply the technique, in its simplest form,
to the Set Multicover problem in Section 5.4. In Section 5.5 we study the optimal
choice of a parameter of our algorithm.

103

104 Set Multicover

5.2 The covering problems

The Set Cover problem is defined as follows. Given a collection C of subsets of U ,
such that

⋃

S∈C S = U , find a collection C′ ⊆ C, such that
⋃

S∈C′ S = U and |C′| is
minimal. We assume that the ground set (also called universum) U has n elements,
numbered from 1 to n. We denote such a set by [n].

The Set Cover problem is NP-complete. Moreover, it was proved by Feige [Fei98]
that the existence of an (c · ln n)-approximation algorithm for Set Cover with c < 1
would imply that NP ⊆ DTIME(nlog log n). Raz and Safra [RS97] proved a slightly
weaker bound on c but using a weaker assumption that P 6= NP . On the other
hand, Johnson [Joh73] and Lovász [Lov75] showed two different algorithms, both of
which approximate Set Cover within a factor of Hn =

∑n
i=1

1
i = Θ(log n).

A natural generalization of Set Cover is the Set Multicover problem, where each
element x of U needs to be covered by at least lx sets, and each subset S ∈ C may be
used an arbitrary number of times. This problem was addressed by Rajagopalan and
Vazirani in [RV99], where an Hn-approximation algorithm was presented. We will,
however, concentrate on the particular case where each element must be covered
by at least k subsets (i.e., lx = k for all x ∈ U). We call this problem k-SetCover.
An instance SC of the k-SetCover is then defined by a triplet (n, C, k), where C is a
collection of [n] subsets. When k = 1, then it is an instance of a Set Cover problem,
which we denote (n, C).

A similar problem – a version where each set may be used at most once (known
as Constrained Set Multicover) – was recently shown [BDS07] to have applications
to reverse engineering of protein and gene networks.

In this chapter, the logarithms are of base 2 unless stated otherwise.

5.3 Bucket Game

In this section we present a simple two-player Bucket Game [BB05], which is
used as a showcase for the Exponential Balancing (EB) technique. The game was
originally used to construct an asymptotically optimal online randomized algorithm
for the Dynamic Page Migration problem. Meanwhile, it turned out that the EB
technique is also perfectly applicable to the k-SetCover problem. In this chapter we
discuss the latter application only.

The game is defined as follows.

Definition 5.3.1 (Bucket Game) Assume we have a set of n buckets, which are
initially empty, numbered from 1 to n.1 We also have an infinite set of balls. For
any i ∈ [n], let ci be the current number of balls in bucket i. Let 0 < c < 1 be any
fixed constant. The Bucket Game is played in rounds by two players A and B. Each
round of the game is defined as follows.

1Note, that the set of buckets corresponds to the ground set in the Set (Multi)Cover problem.
Nevertheless, the game is meant to be more abstract than that, and the relation with the Set Cover
problem is not essential for the strategies of the players.

5.3 Bucket Game 105

• Player A defines a sequence of non-negative weights {wi}ni=1 and shows it to
player B.

• Player B chooses some subset X ⊆ [n] of buckets, s.t.
∑

i∈X wi ≥ c ·∑n
i=1 wi,

and throws exactly one ball into each bucket from X.

The game ends when each of the buckets contains at least T balls (i.e., ci ≥ T for
all i ∈ [n]). The goal of player A is to minimize the number of rounds, while B
wants to play as long as possible.

Let us make the following simple observations. First of all, to throw at least one
ball into each bucket (i.e., for the case T = 1), O(log n) rounds are sufficient. Player
A simply defines wi = 1 for empty buckets and wi = 0 for non-empty ones. Then in
each round at least a fraction c of empty buckets gets a ball. Hence, after at most
log1/(1−c) n rounds there is no empty bucket left. Moreover, to fill each bucket to
the threshold T , player A can repeat this scheme T times, which yields an upper
bound of O(T · log n).

Second, for any T , there exists a player B strategy which prevents finishing the
game in less than Ω(T + log n) rounds. Since each bucket may get at most one ball
per round, the number of rounds cannot be smaller than T . On the other hand,
suppose that in every round B chooses the subset with the smallest number of empty
buckets. With this strategy, in the i-th round, at most ⌈c · ei⌉ of empty buckets get
a ball, where ei is the number of empty buckets at the beginning of the i-th round.
Thus Ω(log n) rounds are also necessary.

Surprisingly, there is a simple player A strategy, which we call Exponential Bal-
ancing, and which asymptotically matches the above-mentioned lower bound.

Theorem 5.3.2 For T = log n, there exists a player A strategy which guarantees
finishing the game in O(log n) rounds.

Proof: In each round, A defines wi = 2−ci . We call wi a weight of a bucket i, and
define the total weight as W =

∑

i∈[n] wi.
Initially, all buckets are empty, wi = 1 for all i. Hence, the initial total weight

is n. In any round each bucket “offers” half of its current weight to player B for
putting a ball into this bucket. According to the rules of the game, B must collect
at least a fraction c of this offered weight. Thus, in every round, the a fraction c/2
of the total weight is removed, i.e., if W and W ′ denote the total weights in two
consecutive rounds, then W ′ ≤ (1− c/2) · W .

If in a round it holds that W ≤ 1/n, then the threshold T is reached and the
game ends. Precisely, W =

∑

i 2−ci ≤ 1/n implies 2−ci ≤ 1/n for all i ∈ [n], and
thus ci ≥ log n for all i ∈ [n].

It remains to observe that the weight of the game is reduced from n to 1/n in
at most log1/(1−c/2) n2 = 2

log 1/(1−c/2) · log n rounds. ⊔⊓
If threshold T is larger than log n, then player A may act as if he was playing

⌈T/ log n⌉ times a game with threshold log n. By Theorem 5.3.2, each of these sub-
games lasts O(log n) rounds, and thus the whole game ends after at most O(T)
rounds. Thus, we get the following.

106 Set Multicover

Corollary 5.3.3 For any T , there exists a player A strategy which guarantees fin-
ishing the game in O(T + log n) rounds.

5.4 Simple constant factor approximation

Consider the relaxation of the Set Cover problem, where each covering set can
be taken a fractional number of times, and call feasible solutions to this relaxation
fractional covers [Lov75]. Formally, a fractional cover is a function f : C → [0, 1],
such that for all elements i ∈ U ,

∑

S:i∈S f(S) ≥ 1.
For any instance (n, C) of the Set Cover problem, let z(n, C, f) =

∑

S∈C f(S)
denote the “size” of the fractional cover f , and let z∗(n, C) = minf z(n, C, f) denote
the minimal size of a fractional cover.

As the cost of the optimal fractional solution of the k-SetCover instance is exactly
k times the cost of the optimal fractional solution of the corresponding Set Cover
instance, we obtain the following lemma.

Lemma 5.4.1 Let (n, C, k) be an instance of the k-SetCover problem. Then the
cost of its optimal solution is at least k · z∗(n, C).

Consider a positive weight function w : U → R≥0 defined on the elements of the
ground set. The notion of weights extends naturally to sets of elements, i.e., the
weight of set S is w(S) =

∑

x∈S w(x). We may bound the weight of the “heaviest”
set as follows.

Lemma 5.4.2 For any Set Cover instance (n, C), and any weight function w, it
holds that

max
S∈C

w(S) ≥
∑

x∈U w(x)

z∗(n, C) .

Proof: Let f be a fractional cover of size z∗(n, C).

max
S∈C

w(S) ≥
∑

S∈C f(S)w(S)
∑

S∈C f(S)

≥
∑

x∈U w(x)
∑

S∈C f(S)

=

∑

x∈U w(x)

z∗(n, C) .

⊔⊓

5.4 Simple constant factor approximation 107

Algorithm EBCover

Input: (n, C, k), instance of k-SetCover
Output: multiset CEB covering each element k times
1. CEB = ∅
2. For any x ∈ U , let cx = |{S ∈ CEB : x ∈ S}| denote the number of times CEB

covers x
3. while there exists x ∈ U with cx < k
4. w(x)← 2−cx

5. CEB ← CEB ∪ {arg maxS∈C w(S)} /* add the heaviest set */
6. return CEB;

Figure 5.1: Algorithm EBCover

The following technical lemma is useful for bounding the approximation ratios.

Lemma 5.4.3 For any a, x > 0, it holds that

1

loga(1/(1− x))
≤ ln a

x
.

Proof: Fix any a, x > 0. Using the relation (1− x)1/x ≤ 1
e , we obtain

1

loga(1/(1− x))
=

1

x · 1
x · loga ((1− x)−1)

=
1

x · loga

(
(1− x)−1/x

)

≤ 1

x · loga e

=
ln a

x
.

⊔⊓
Consider the algorithm EBCover described in Figure 5.1.

Theorem 5.4.4 The approximation ratio of the EBCover algorithm on a (log n)-
SetCover instance is at most 4 · ln 2 ≈ 2.772.

Proof: Fix any instance of (log n)-SetCover, (n, C, log n). We reformulate the
proof of Theorem 5.3.2 in terms of set covers.

Let c = 1/z∗(n, C) ≤ 1. The algorithm EBCover takes the role of player A
defining weights on items that we want to cover. The set chosen in step 5 corresponds
to a valid choice of player B (by Lemma 5.4.2, such choice removes at least a fraction
of c/2 from the total weight). Thus, by the same argument as in the proof of

108 Set Multicover

Theorem 5.3.2, the algorithm terminates after adding 2
log(1/(1−c/2)) · log n sets to

CEB.
By Lemma 5.4.1 the optimal solution has at least k · z∗(SC) = 1

c · log n sets.
Hence, the approximation ratio is bounded by

2
log(1/(1−c/2)) · log n

1
c · log n

=
2c

log(1/(1− c/2))
≤ 2c · ln 2

c/2
= 4 · ln 2 .

⊔⊓

5.5 Improvements by parameter adjustments

In this section, we consider a different choice of constants for the EBCover algo-
rithm. In particular, we may change the base 2 in the weight function formula w(x)
occurring in step 4 to a parameter α. We call a resulting algorithm EBCoverα.
It turns out that for large coverage parameters, and with an appropriate choice of
parameter α, the approximation ratio tends to 1.

Theorem 5.5.1 The approximation ratio of the EBCoverα algorithm on a
(logγ n)-SetCover instance is at most α

α−1 · (ln γ + ln α).

Proof: The proof is a parametrized version of the proof of Theorem 5.4.4. Fix
any instance (n, C, logγ n). Again, let c = 1/z∗(n, C). The initial total weight is
equal to n ·α−0 = n, and the algorithm may stop when the total weight drops below
α− logγ n. Moreover, in each step at least a fraction of c · α−1

α is removed from the
total weight. Thus the number E of sets used by the algorithm is at most

E ≤ log 1

1−c· α−1
α

(
n · αlogγ n

)
=

logγ n + logγ n · logγ α

logγ

(
1/

(
1− c · α−1

α

)) .

At this time, the lower bound on the optimum is 1
c · logγ n, and we may bound the

approximation factor by

c · (1 + logγ α)

logγ

(
1/

(
1− c · α−1

α

)) ≤ c · (1 + logγ α) · ln γ

c · α−1
α

=
α

α− 1
· (ln γ + ln α) .

⊔⊓
For a fixed γ > 1, let αγ denote the optimal choice of α > 1, i.e., the value of α

that minimizes f(α, γ) = α
α−1 · (ln γ + ln α).

Lemma 5.5.2 For any γ > 1, αγ is defined by:

1 + ln γ + ln αγ − αγ = 0.

Moreover, f(αγ , γ) = αγ .

5.5 Improvements by parameter adjustments 109

Proof: To find the value of αγ we calculate the derivative of f(α, γ) with respect
to α.

d(f(α, γ))

dα
=
−1 + α− ln γ − ln α

(−1 + α)2
.

As we restrict our attention to the case α > 1, the enumerator of the derivative is
monotone increasing in α and it is equal 0 when 1 + ln γ + ln α − α = 0. As we
assume that α > 1, the denominator of the derivative is always positive, hence the
minimum of f(α, γ) with respect to α > 1 is attained when the derivative vanishes.

As we use the equation defining αγ to simplify f(αγ , γ), we obtain

f(αγ , γ) =
αγ(ln γ + ln αγ)

αγ − 1
=

αγ((αγ − 1− ln αγ) + ln αγ)

αγ − 1
=

αγ(αγ − 1)

αγ − 1
= αγ .

⊔⊓
As we have just shown, for a given value of γ, αγ gives both the optimal choice

of α and the resulting approximation guarantee. The following table shows values
of αγ for various choices of γ.

γ αγ

1.001 1.046
1.01 1.148
1.1 1.502
1.2 1.731
1.5 2.189
2 2.678
e 3.146
3 3.289

Consider a more universal version of our algorithm, namely the algorithm
EBCoverU defined as follows. The algorithm EBCoverU on an instance (n, C, k)
first computes γ = n1/k so that logγ n = k. Then it computes αγ as a solution to
1 + ln γ + ln αγ − αγ = 0. Finally it runs the algorithm EBCoverα with α = αγ .

We may think of the EBCoverU algorithm as of a universal algorithm for the k-
SetCover problem (for general k). Additionally, by Theorem 5.5.1 and Lemma 5.5.2,
under the assumption that k = Ω(log n), EBCoverU is a constant factor approxi-
mation algorithm for the k-SetCover problem.

Suppose we could assume that the required coverage is even larger, namely that
there exists k0(n) = ω(log n) and that k ≥ k0(n) in all the considered instances. In
such a situation, as limγ→1 f(αγ , γ) = 1, we get the following.

Corollary 5.5.3 There is a PTAS for the k-SetCover problem with k ≥ k0(n) =
ω(log n).

Proof: To get an ǫ-approximation algorithm for some ǫ > 1 we proceed as follows.
We compute γ such that αγ = ǫ and 1+lnγ +ln αγ−αγ = 0. Then we compute n0,

110 Set Multicover

such that logγn0 = k0(n0). Finally, we construct an algorithm that on an instance
(n, C, k) of the k-SetCover problem proceeds as follows:

• if n < n0, the algorithms enumerates all the possible solutions and finds the
optimal solution for the instance;

• if n ≥ n0, the algorithm runs the EBCoverU algorithm.

Observe, that for big enough values of n, the required coverage is also big, so the
obtained values of γ in the algorithm EBCoverU are small enough. As a result
the values of αγ are small enough, in particular, αγ ≤ ǫ. ⊔⊓

References

[Abe76] R. Abel, Man is the measure: A cordial invitation to the central prob-
lems of philosophy, pp. 1–17, The Free Press, 1976.

[ABM08] K. Aardal, J. Byrka, and M. Mahdian, Facility location, Encyclopedia
of Algorithms (to appear) (M.-Y. Kao, ed.), Springer, 2008.

[ABUvH04] A. Anagnostopoulos, R. Bent, E. Upfal, and P. van Hentenryck, A sim-
ple and deterministic competitive algorithm for online facility location,
Information and Computation 194 (2004), no. 2, 175–202.

[ACS99] K. Aardal, F. A. Chudak, and D. B. Shmoys, A 3-approximation algo-
rithm for the k-level uncapacitated facility location problem, Informa-
tion Processing Letters 72 (1999), 161–167.

[AGK+01] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit, Local search heuristics for k-median and facility location
problems, Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (STOC), ACM, 2001, pp. 21–29.

[AKK99] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation
schemes for dense instances of NP-hard problems, Journal of Computer
and System Sciences 58 (1999), no. 1, 193–210.

[Alt94] I. Althöfer, On sparse approximations to randomized strategies and con-
vex combinations, Linear Algebra and Applications 199 (1994), 339–
355.

[ARR98] S. Arora, P. Raghavan, and S. Rao, Approximation schemes for eu-
clidean k-medians and related problems, Proceedings of the 30th An-
nual ACM Symposium on Theory of Computing (STOC), ACM, New
York, NY, USA, 1998, pp. 106–113.

[AS99] A. A. Ageev and M. I. Sviridenko, An 0.828-approximation algorithm
for the uncapacitated facility location problem, Discrete Applied Math-
ematics 93 (1999), 149–156.

[ASSU81] A. Aho, Y. Sagiv, T. Szymanski, and J. Ullman, Inferring a tree from
lowest common ancestors with an application to the optimization of
relational expressions, SIAM Journal on Computing 10 (1981), no. 3,
405–421.

111

112 REFERENCES

[AYZ03] A. Ageev, Y. Ye, and J. Zhang, Improved combinatorial approximation
algorithms for the k-level facility location problem, Proceedings of the
30th International Colloquium on Automata, Languages and Program-
ming (ICALP), LNCS, vol. 2719, Springer, 2003, pp. 145–156.

[BA07] J. Byrka and K. Aardal, The approximation gap for the metric facil-
ity location problem is not yet closed, Operations Research Letters 35
(2007), no. 3, 379–384.

[Bal66] M. L. Balinski, On finding integer solutions to linear programs, Pro-
ceedings of the IBM Scientific Computing Symposium on Combinato-
rial Problems, 1966, pp. 225–248.

[BB05] M. Bienkowski and J. Byrka, Bucket game with applications to set mul-
ticover and dynamic page migration, Proceedings of the 13th European
Symposium on Algorithms (ESA), LNCS, vol. 3669, Springer, 2005,
pp. 815–826.

[BBB+08] K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg, R. I. Silveira, and
A. Wolff, Drawing (complete) binary tanglegrams: Hardness, approxi-
mation, fixed-parameter tractability, arXiv:0806.0920v1 [cs.CG], 2008,
To appear in Proceedings of the 16th International Symposium on
Graph Drawing (GD).

[BBM07] H. Bosse, J. Byrka, and E. Markakis, New algorithms for approximate
Nash equilibria, Proceedings of the 3rd Workshop on Internet and Net-
work Economics (WINE), LNCS, vol. 4858, Springer, 2007, pp. 17–29.

[BDMT98] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia, Optimal
upward planarity testing of single-source digraphs, SIAM Journal on
Computing 27 (1998), no. 1, 132–169.

[BDS07] P. Berman, B. DasGupta, and E. Sontag, Randomized approximation
algorithms for set multicover problems with applications to reverse en-
gineering of protein and gene networks, Discrete Applied Mathematics
155 (2007), no. 6-7, 733–749.

[BE04] O. Bininda-Emonds, Phylogenetic supertrees: combining information to
reveal the tree of life, Computational Biology Series, vol. 4, The MIT
Press, 2004.

[BFC00] M. Bender and M. Farach-Colton, The lca problem revisited, Proceed-
ings of Latin American Theoretical INformatics (LATIN), LNCS, vol.
1776, Springer, 2000, pp. 88–94.

[BFC04] M. Bender and M. Farach-Colton, The level ancestor problem simplified,
Theoretical Computer Science 321 (2004), no. 1, 5–12.

[BGHK08] J. Byrka, P. Gawrychowski, K. T. Huber, and S. Kelk, Worst-case
optimal approximation algorithms for maximizing triplet consistency
within phylogenetic networks, arXiv:0710.3258v3 [q-bio.PE], 2008.

REFERENCES 113

[BGJ08] J. Byrka, S. Guillemot, and J. Jansson, New results on optimizing rooted
triplets consistency, To appear in Proceedings of the 19th International
Symposium on Algorithms and Computation (ISAAC), 2008.

[Bry97] D. Bryant, Building trees, hunting for trees, and comparing trees: the-
ory and methods in phylogenetic analysis, Ph.D. thesis, University of
Canterbury, Christchurch, New Zealand, 1997.

[BSS04] M. Baroni, C. Semple, and M. Steel, A framework for representing
reticulate evolution, Annals of Combinatorics 8 (2004), no. 4, 391–408.

[BW63] M. L. Balinski and P. Wolfe, On benders decomposition and a plant lo-
cation problem, ARO-27, Mathematica Inc. Princeton, NJ, USA, 1963.

[Byr07] J. Byrka, An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem, Proceedings of the 10th Inter-
national Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), LNCS, vol. 4627, Springer, 2007, pp. 29–43.

[CD06] X. Chen and X. Deng, Settling the complexity of 2-player Nash equilib-
rium, Proceeding of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), IEEE Computer Society, 2006, pp. 261–
272.

[CDT06] X. Chen, X. Deng, and S. Teng, Computing Nash equilibria: Approxi-
mation and smoothed complexity, Proceeding of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), IEEE Com-
puter Society, 2006, pp. 603–612.

[CFN77] G. Cornuéjols, M. L. Fisher, and G. L. Nemhauser, Location of bank
accounts to optimize float: An analytic study of exact and approximate
algorithms, Management Science 8 (1977), 789–810.

[CG99] M. Charikar and S. Guha, Improved combinatorial algorithms for fa-
cility location and k-median problems, Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, 1999, pp. 378–388.

[CGTS99] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys, A constant-
factor approximation algorithm for the k-median problem, Proceedings
of the 31st Annual ACM Symposium on Theory of Computing (STOC),
ACM, 1999, pp. 1–10.

[Chu98] F. Chudak, Improved approximation algorithms for uncapacited facil-
ity location, Integer Programming and Combinatorial Optimization
(R. Bixby, E. Boyd, and R. Rı́os-Mercado, eds.), Lecture Notes in Com-
puter Science, vol. 1412, Springer, Berlin, 1998, pp. 180–194.

[CK] P. Crescenzi and V. Kann, A compendium of NP optimization problems,
http://www.nada.kth.se/∼viggo/problemlist/compendium.html.

http://www.nada.kth.se/~viggo/problemlist/compendium.html

114 REFERENCES

[CKMN01] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan, Facility loca-
tion with outliers, Proceedings of the 12th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), SIAM, 2001, pp. 642–651.

[CLL+08] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, A fixed-parameter
algorithm for the directed feedback vertex set problem, Proceedings of
40th Annual ACM Symposium on Theory of Computing (STOC),
ACM, 2008, pp. 177–186.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 2nd ed., The MIT Press, 2001.

[CMM05] I. Cassens, P. Mardulyn, and M. Milinkovitch, Evaluating intraspecific
“network” construction methods using simulated sequence data: Do ex-
isting algorithms outperform the global maximum parsimony approach?,
Systematic Biology 54 (2005), 363–372.

[CNW90] G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey, The uncapacitated
facility location problem, Discrete Location Theory (P. Mirchandani
and R. Francis, eds.), John Wiley & Sons Inc., 1990, pp. 119–171.

[Coo71] S. Cook, The complexity of theorem proving procedures, Proceedings of
the Third Annual ACM Symposium on Theory of Computing (STOC),
ACM, 1971, pp. 151–158.

[CRV07] G. Cardona, F. Rossello, and G. Valiente, Tripartitions do not always
discriminate phylogenetic networks, arXiv:0707.2376v1 [q-bio.PE],
2007.

[CS98] B. Chor and M. Sudan, A geometric approach to betweenness, SIAM
Journal on Discrete Mathematics 11 (1998), no. 4, 511–523.

[CS03] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms
for the uncapacitated facility location problem, SIAM Journal on Com-
puting 33 (2003), no. 1, 1–25.

[CW99] F. Chudak and D. Wiliamson, Improved approximation algorithms for
capacitated facility location problems, Proceedings of the 7th Confer-
ence on Integer Programing and Combinatorial Optimization (IPCO),
LNCS, vol. 1610, Springer, 1999, pp. 99–113.

[Dar59] C. Darwin, The origin of species by means of natural selection or the
preservation of favoured races in the struggle for life, J. Murray, 1859.

[DF99] R. Downey and M. Fellows, Parameterized complexity, Springer, 1999.

[DFK04] V. Dujmovič, H. Fernau, and M. Kaufmann, Fixed parameter algo-
rithms for one-sided crossing minimization revisited, Proceedings of
the 11th International Symposium on Graph Drawing (GD’03), LNCS,
vol. 2912, Springer, 2004, pp. 332–344.

[DGP06] C. Daskalakis, P. Goldberg, and C. Papadimitriou, The complexity of
computing a Nash equilibrium, Proceedinds of the 38th Annual ACM
Symposium on Theory of Computing (STOC), ACM, 2006, pp. 71–78.

REFERENCES 115

[DHJ+97] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, On dis-
tances between phylogenetic trees, Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA), SIAM, 1997, pp. 427–436.

[DMP06] C. Daskalakis, A. Mehta, and C. Papadimitriou, A note on approxi-
mate Nash equilibria, Workshop on Internet and Network Economics
(WINE), LNCS, vol. 4286, Springer, 2006, pp. 297–306.

[DMP07] C. Daskalakis, A. Mehta, and C. Papadimitriou, Progress on approxi-
mate Nash equilibria, Proceedings of the 8th ACM Conference on Elec-
tronic Commerce (EC), ACM, 2007, pp. 355–358.

[Doo99] W. Doolittle, Phylogenetic classification and the universal tree, Nature
284 (1999), 2124–2128.

[DS04] T. Dwyer and F. Schreiber, Optimal leaf ordering for two and a half di-
mensional phylogenetic tree visualization, Proceedings of the 2004 Aus-
tralasian symposium on Information Visualisation (InVis.au), CRPIT,
vol. 35, Australian Computer Society, 2004, pp. 109–115.

[ENSS98] G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum
feedback sets and multicuts in directed graphs, Algorithmica 20 (1998),
no. 2, 151–174.

[Erl78] D. Erlenkotter, A dual-based procedure for uncapacitated facility loca-
tion problems, Operations Research 26 (1978), 992–1009.

[EW94] P. Eades and N. Wormald, Edge crossings in drawings of bipartite
graphs, Algorithmica 10 (1994), 379–403.

[EY07] K. Etessami and M. Yannakakis, On the complexity of Nash equilibria
and other fixed points, Proceedings of the 48th Symposium on Foun-
dations of Computer Science (FOCS), IEEE Computer Society, 2007,
pp. 113–123.

[Fei98] U. Feige, A threshold of lnn for approximating set cover, Journal of the
ACM 45 (1998), no. 4, 634–652.

[FKP05] H. Fernau, M. Kaufmann, and M. Poths, Comparing trees via crossing
minimization, Proceedings of the 25th Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), LNCS, vol. 3821,
Springer, 2005, pp. 457–469.

[FNS07] T. Feder, H. Nazerzadeh, and A. Saberi, Approximating Nash equilibria
using small-support strategies, Proceedings of the 8th ACM Conference
on Electronic Commerce (EC), ACM, 2007, pp. 352–354.

[Fot03] D. Fotakis, On the competitive ratio for online facility location, Pro-
ceedings of the 30th International Colloquium on Automata, Languages
and Programming (ICALP), LNCS, vol. 2719, Springer, 2003, pp. 637–
652.

116 REFERENCES

[GJLO99] L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin, On the complexity of
constructing evolutionary trees, Journal of Combinatorial Optimization
3 (1999), 183–197.

[GK98] S. Guha and S. Khuller, Greedy strikes back: Improved facility location
algorithms, Proceedings of the 9th ACM-SIAM Symposium on Discrete
Algorithms (SODA), SIAM, 1998, pp. 228–248.

[GMM00] S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement and
network design problems, Proceedings of the 41st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), IEEE Computer
Society, 2000, pp. 603–612.

[GP06] P. Goldberg and C. Papadimitriou, Reducibility among equilibrium
problems, Proceedinds of the 38th Annual ACM Symposium on Theory
of Computing (STOC), ACM, 2006, pp. 61–70.

[GPRS04] A. Gupta, M. Pál, R. Ravi, and A. Sinha, Boosted sampling: approxi-
mation algorithms for stochastic optimization, Proceedings of the 36st
Annual ACM Symposium on Theory of Computing (STOC), ACM,
2004, pp. 417–426.

[Gui] S. Guillemot, Private communication.

[Gur90] Y. Gurevich, Nondeterministic linear-time tasks may require substan-
tially nonlinear deterministic time in the case of sublinear work space,
J. ACM 37 (1990), no. 3, 674–687.

[Gvo08] N. Gvozdenović, Approximating the stability number and the chromatic
number of a graph via semidefinite programming, Ph.D. thesis, Univer-
siteit van Amsterdam, 2008.

[GW95] M. X. Goemans and D. P. Williamson, Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming, Journal of ACM 42 (1995), no. 6, 1115–1145.

[H̊as97] J. H̊astad, Some optimal approximability results, Proceedings of the
28th Annual ACM Symposium on Theory of Computing (STOC),
ACM, 1997, pp. 1–10.

[Has99] J. Hastad, Clique is hard to approximate within n1−ε, Acta Mathemat-
ica 182 (1999), 105–142.

[HMM03] M. Hajiaghayi, M. Mahdian, and V. Mirrokni, The facility location
problem with general cost functions, Networks 42 (2003), no. 1, 42–47.

[Hoc82] D. S. Hochbaum, Heuristics for the fixed cost median problem, Mathe-
matical Programming 22 (1982), no. 2, 148–162.

[HS85] D. S. Hochbaum and D. B. Shmoys, A best possible approximation al-
gorithm for the k-center problem, Mathematics of Operations Research
10 (1985), 180–184.

REFERENCES 117

[HSV+94] M. S. Hafner, P. D. Sudman, F. X. Villablanca, T. A. Spradling, J. W.
Demastes, and S. A. Nadler, Disparate rates of molecular evolution in
cospeciating hosts and parasites, Science 265 (1994), 1087–1090.

[Jan01] J. Jansson, On the complexity of inferring rooted evolutionary trees,
Proceedings of the Brazilian Symposium on Graphs, Algorithms, and
Combinatorics, Electronic Notes in Discrete Mathematics, vol. 7, Else-
vier, 2001, pp. 121–125.

[JMS02] K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility
location problems, Proceedings of the 34st Annual ACM Symposium on
Theory of Computing (STOC), ACM, 2002, pp. 731–740.

[JNS00] J. Jansson, N. Nguyen, and W. Sung, Algorithms for combining rooted
triplets into a galled phylogenetic network, SIAM Journal on Computing
35 (200), no. 5, 1098–1121.

[Joh73] D. S. Johnson, Approximation algorithms for combinatorial problems,
Proceedings of the 5th Annual ACM Symposium on Theory of Com-
puting (STOC), ACM, 1973, pp. 38–49.

[JS06] J. Jansson and W. Sung, Inferring a level-1 phylogenetic network from
a dense set of rooted triplets, Theoretical Computer Science 363 (2006),
no. 1, 60–68.

[JV00] K. Jain and V. V. Vazirani, An approximation algorithm for the fault
tolerant metric facility location problem, Proceedings of the 3rd Inter-
national Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), LNCS, vol. 1913, Springer, 2000, pp. 177–
183.

[JV01] K. Jain and V. V. Vazirani, Approximation algorithms for metric facil-
ity location and k-median problems using the primal-dual schema and
lagrangian relaxation, Journal of the ACM 48 (2001), 274–296.

[Kel] S. Kelk, http://homepages.cwi.nl/∼kelk/tripletverify/.

[KGDO05] V. Kunin, L. Goldovsky, N. Darzentas, and C. A. Ouzounis, The net
of life: Reconstructing the microbial phylogenetic network, Genome Re-
search 15 (2005), 954–959.

[KH63] A. A. Kuehn and M. J. Hamburger, A heuristic program for locating
warehouses, Management Science 9 (1963), 643–666.

[Kha79] L. Khachiyan, A polynomial algorithm in linear programming (in rus-
sian), Doklady Akademii Nauk SSSR 244 (1979), 1093 – 1096, English
translation: Soviet Mathematics Doklady 20 (1979) 191 – 194.

[Kho02] S. Khot, On the power of unique 2-prover 1-round games, Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC),
ACM, 2002, pp. 767–775.

http://homepages.cwi.nl/~kelk/tripletverify/

118 REFERENCES

[KM00] D. Karger and M. Minkoff, Building steiner trees with incomplete global
knowledge, Proceedings of the 41st Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), IEEE Computer Society, 2000,
pp. 613–623.

[KMS07] C. Kenyon-Mathieu and W. Schudy, How to rank with few errors, Pro-
ceedings of the 39th Annual ACM Symposium on Theory of computing
(STOC), ACM, 2007, pp. 95–103.

[KP83] J. Krarup and P. M. Pruzan, The simple plant location problem: Survey
and synthesis, European Journal of Operational Research 12 (1983),
38–81.

[KP90] J. Krarup and P. M. Pruzan, Ingredients of locational analysis, Discrete
Location Theory (P. Mirchandani and R. Francis, eds.), John Wiley &
Sons, 1990, pp. 1–54.

[KPS06] S. Kontogiannis, P. Panagopoulou, and P. Spirakis, Polynomial algo-
rithms for approximating Nash equilibria of bimatrix games, Proceed-
ings of the 2nd Workshop on Internet and Network Economics (WINE),
LNCS, vol. 4286, Springer, 2006, pp. 286–296.

[KS96] K. Kent and D. Skorin-Kapov, Population monotonic cost allocation
on MST’s, In Operational Reearch Proceedings KOI (1996), 43–48.

[KV05] S. Khot and N. K. Vishnoi, The unique games conjecture, integrality
gap for cut problems and embeddability of negative type metrics into l1,
Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society, 2005, pp. 53–62.

[Lev73] L. Levin, Universal search problems (Russian: Universal’nye pere-
bornye zadachi), Problems of Information Transmission (Russian:
Problemy Peredachi Informatsii) 9 (1973), no. 3, 265 – 266, translated
into English by B. A. Trakhtenbrot (1984). ”A survey of Russian ap-
proaches to perebor (brute-force searches) algorithms”. Annals of the
History of Computing 6 (1984), no. 4, 384 – 400.

[LMM03] R. Lipton, E. Markakis, and A. Mehta, Playing large games using sim-
ple strategies, Proceedings of the 4th ACM Conference on Electronic
Commerce (EC), ACM, 2003, pp. 36–41.

[Lov75] L. Lovász, On the ratio of the optimal integral and fractional covers,
Discrete Mathematics 13 (1975), 383–390.

[LPR+07] A. Lozano, R. Y. Pinter, O. Rokhlenko, G. Valiente, and M. Ziv-
Ukelson, Seeded tree alignment and planar tanglegram layout, Proceed-
ings of the 7th International Workshop on Algorithms in Bioinformatics
(WABI), LNCS, vol. 4645, Springer, 2007, pp. 98–110.

[LR04] C. R. Linder and L. H. Rieseberg, Reconstructing patterns of reticulate
evolution in plants, Reconstructing patterns of reticulate evolution in
plants 91 (2004), 1700–1708.

REFERENCES 119

[LSS04] R. Levi, D. Shmoys, and C. Swamy, Lp-based approximation algorithms
for capacitated facility location, Proceedings of the 10th Conference on
Integer Programming and Combinatorial Optimization (IPCO), LNCS,
vol. 3064, Springer, 2004, pp. 206–218.

[LV92] J. Lin and J. Vitter, ǫ-approximations with minimum packing constraint
violation, Proceedings of the 24th Annual ACM Symposium on Theory
of Computing (STOC), ACM, 1992, pp. 771–782.

[Mah04] M. Mahdian, Facility location and the analysis of algorithms through
factor-revealing programs, Ph.D. thesis, MIT, 2004.

[Man64] A. S. Manne, Plant location under economies-of-scale – decentralization
and computation, Management Sciences 11 (1964), 213–235.

[Mar99] W. Martin, Mosaic bacterial chromosomes: a challenge on route to a
tree of genomes, BioEssays 21 (1999), 99–104.

[Mey01] A. Meyerson, Online facility location, Proceedings of the 42nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, 2001, pp. 426–431.

[MF90] P. B. Mirchandani and R. L. Francis (eds.), Discrete location theory,
John Wiley & Sons, 1990.

[MP03] M. Mahdian and M. Pál, Universal facility location, Proceedings of the
11th Annual European Symposium on Algorithms (ESA), LNCS, vol.
2832, Springer, 2003, pp. 409–421.

[MR95] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge Uni-
versity Press, 1995.

[MYZ02] M. Mahdian, Y. Ye, and J. Zhang, Improved approximation algorithms
for metric facility location problems, Proceedings of the 5th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Op-
timization (APPROX), LNCS, vol. 2462, Springer, 2002, pp. 229–242.

[MYZ03] M. Mahdian, Y. Ye, and J. Zhang, A 2-approximation algorithm for
the soft-capacitated facility location problem, Proceedings of the 6th In-
ternational Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), LNCS, vol. 2764, Springer, 2003, pp. 149–
162.

[MYZ06] M. Mahdian, Y. Ye, and J. Zhang, Approximation algorithms for met-
ric facility location problems, SIAM Journal on Computing 36 (2006),
no. 2, 411–432.

[Nag05] H. Nagamochi, An improved bound on the one-sided minimum crossing
number in two-layered drawings, Discrete Computational Geometry 33
(2005), no. 4, 565–591.

[Nas51] J. F. Nash, Non-cooperative games, Annals of Mathematics 54 (1951),
286–295.

120 REFERENCES

[NSW+03] L. Nakhleh, J. Sun, T. Warnow, C. Linder, B. Moret, and A. Tholse,
Towards the development of computational tools for evaluating phylo-
genetic network reconstruction methods, Proceedings of Pacific Sympo-
sium on Biocomputing, vol. 8, 2003, pp. 315–326.

[NV01] A. Newman and S. Vempala, Fences are futile: On relaxations for
the linear ordering problem, Proceedings of the 8th International
Conference on Integer Programming and Combinatorial Optimization
(IPCO), LNCS, vol. 2081, Springer, 2001, pp. 333–347.

[NW88] G. Nemhauser and L. Wolsey, Integer and combinatorial optimization,
John Wiley & Sons, 1988.

[Pag02] R. D. M. Page (ed.), Tangled trees: Phylogeny, cospeciation, and co-
evolution, University of Chicago Press, 2002.

[Pap94] C. Papadimitriou, On the complexity of the parity argument and other
inefficient proofs of existence, Journal of Computer and System Sci-
ences 48 (1994), no. 3, 498–532.

[PTW01] M. Pál, E. Tardos, and T. Wexler, Facility location with nonuniform
hard capacities, Proceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE Computer Society,
2001, pp. 329– 338.

[PY91] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation,
and complexity classes, Journal of Computer and System Sciences 43
(1991), 425–440.

[RAM] http://en.wikipedia.org/wiki/Random access machine.

[RL04] M. C. Rivera and J. A. Lake, The ring of life provides evidence for a
genome fusion origin of eukaryotes, Nature 43 (2004), 152–155.

[RRR98] V. Raman, B. Ravikumar, and S. S. Rao, A simplified NP-complete
MAXSAT problem, Information Processing Letters 65 (1998), 1–6.

[RS97] R. Raz and S. Safra, A sub-constant error-probability low-degree test,
and a sub-constant error-probability PCP characterization of NP,
Prrroceedings of the 29th Annual ACM Symposium on Theory of Com-
puting (STOC), ACM, 1997, pp. 475–484.

[RS02] R. Ravi and A. Sinha, Integrated logistics: Approximation algorithms
combining facility location and network design, Proceedings of the 9th
Conference on Integer Programming and Combinatorial Optimization
(IPCO), LNCS, vol. 2337, Springer, 2002, pp. 212–229.

[RS04] R. Ravi and A. Sinha, Multicommodity facility location, Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2004, pp. 342–349.

[RS06] R. Ravi and A. Sinha, Hedging uncertainty: Approximation algorithms
for stochastic optimization problems, Mathematical Programming 108
(2006), no. 1, 97–114.

http://en.wikipedia.org/wiki/Random_access_machine

REFERENCES 121

[RV99] S. Rajagopalan and V. V. Vazirani, Primal-dual RNC approximation
algorithms for set cover and covering integer programs, SIAM Journal
on Computing 28 (1999), no. 2, 525–540.

[Sch86] A. Schrijver, Theory of linear and integer programming, John Wiley &
Sons, 1986.

[Shm00] D. B. Shmoys, Approximation algorithms for facility location problems,
Proceedings of the 3rd International Workshop on Approximation Algo-
rithms for Combinatorial Optimization (APPROX), LNCS, vol. 1913,
Springer, 2000, pp. 27–33.

[Shm04] D. B. Shmoys, The design and analysis of approximation algorithms:
Facility location as a case study, Proceedings of Symposia in Applied
Mathematics, vol. 61, AMS, 2004, pp. 85–97.

[SK04] C. Swamy and A. Kumar, Primal-dual algorithms for connected facility
location problems, Algorithmica 40 (2004), no. 4, 245–269.

[ST06] Z. Svitkina and E. Tardos, Facility location with hierarchical facility
costs, Proceedings of the 17th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), SIAM, 2006, pp. 153–161.

[ST07] P. Spirakis and H. Tsaknakis, An optimization approach for approx-
imate Nash equilibria, 3rd Workshop on Internet and Network Eco-
nomics (WINE), LNCS, vol. 4858, Springer, 2007, pp. 42–56.

[STA97] D. B. Shmoys, E. Tardos, and K. Aardal, Approximation algorithms
for facility location problems, Proceedings of the 29th Annual ACM
Symposium on Theory of Computing (STOC), ACM, 1997, pp. 265–
274.

[Sto63] J. F. Stollsteimer, A working model for plant numbers and locations,
Journal of Farm Economics 45 (1963), 631–645.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda, Methods for visual understand-
ing of hierarchical system structures, IEEE Transactions on Systems,
Man, and Cybernetics 11 (1981), no. 2, 109–125.

[Svi02] M. Sviridenko, An improved approximation algorithm for the metric un-
capacitated facility location problem, Proceedings of the 9th Conference
on Integer Programming and Combinatorial Optimization (IPCO),
LNCS, vol. 2337, Springer, 2002, pp. 240–257.

[Tur37] A. Turing, On computable numbers, with an application to the entschei-
dungsproblem, Proceedings of the London Mathematical Society, Series
2 42 (1937), 115–154.

[Vaz01] V. V. Vazirani, Approximation algorithms, Springer-Verlag, 2001.

[vIKK+08] L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, F. Hagen, and
T. Boekhout, Constructing level-2 phylogenetic networks from triplets,
Proceedings of the 12th Annual International Conference on Research

122 REFERENCES

in Computational Molecular Biology (RECOMB), LNCS, vol. 4955,
Springer, 2008, pp. 450–462.

[Vyg05] J. Vygen, Approximation algorithms for facility location problems
(lecture notes), Tech. Report 05950-OR, Research Institute for
Discrete Mathematics, University of Bonn, 2005, Available at
http://www.or.uni-bonn.de/∼vygen/fl.pdf.

[Woe] G. Woeginger, http://www.win.tue.nl/∼gwoegi/P-versus-NP.htm.

[Wu04] B. Wu, Constructing the maximum consensus tree from rooted triples,
Journal of Combinatorial Optimization 8 (2004), 29–39.

[ZCY05] J. Zhang, B. Chen, and Y. Ye, A multiexchange local search algorithm
for the capacitated facility location problem, Mathematics of Operations
Research 30 (2005), no. 2, 389–403.

[Zha04] J. Zhang, Approximating the two-level facility location problem via a
quasi-greedy approach, Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), SIAM, 2004, pp. 808–
817.

[Zha06] J. Zhang, Approximating the two-level facility location problem via a
quasi-greedy approach, Mathematical Programming, Ser. A 108 (2006),
159–176.

http://www.or.uni-bonn.de/~vygen/fl.pdf
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Summary

Randomized Approximation Algorithms:
Facility Location, Phylogenetic Networks, Nash Equilibria

In this thesis, we study combinatorial optimization problems, including met-
ric Uncapacitated Facility Location (UFL), construction of phylogenetic networks,
computation of Nash equilibria, and a generalization of the Set Cover problem.

The studied problems are known to be hard to solve optimally. An efficient
computation of approximate solutions is a challenge. A number of constant factor
approximation algorithms is provided in the thesis. The given algorithms, typically,
improve the best known approximation ratio for a particular problem. Our main
contributions are as follows.

The metric UFL problem is to decide about location of facilities that need to
be opened to serve a given set of clients. The objective is to find a solution that
minimizes the total cost of opening facilities and servicing clients. We provide a
1.5-approximation algorithm for the UFL problem, which has the currently best
known approximation guarantee.

One of the central problems in computational biology is to construct models of
the evolutionary development of species in the nature. In the simplest setting, we
aim at reconstructing the evolutionary tree of a set of species, given information on
how closely related certain pairs of species are. A natural algorithmic problem is
to efficiently construct phylogenetic networks consistent with most of the provided
information. Our main contribution to the field of phylogenetics, is an improved
method for constructing approximate level-1 and level-2 phylogenetic networks. We
also consider the problem of comparing trees. We propose algorithms that draw
trees in the plane to facilitate a graphical comparison.

A central concept in the noncooperative game theory is the Nash equilibrium. An
equilibrium is a set of strategies (one for each player) that are stable, i.e., no player
has an incentive to unilaterally change his strategy. John Nash proved that for any
finite noncooperative game there exist an equilibrium. One of the currently most
fascinating open problems in theoretical computer science is to efficiently find such
equilibria. The problem has been recently shown to be complete for the class PPAD
even in the case of only two players. Therefore, a natural approach is to develop
efficient algorithms that find approximate equilibria. In this thesis, we present an

123

124 Summary

LP-rounding algorithm that computes 0.364-approximate Nash equilibria.
The classic Set Cover problem of covering elements with a minimal number of

subsets is known to be difficult to approximate. We study a generalization of the
problem, where each of the elements needs to be covered a certain number of times.
We provide an algorithm that, under the assumption that the level of coverage
is at least logarithmic in the number of elements to cover, is a constant factor
approximation algorithm for the problem.

Curriculum Vitae

Jaroslaw Byrka was born on the 30th of May 1980 in Wroclaw, Poland. From 1999
to 2004 he studied Computer Science at the University of Wroclaw. During his
studies he spent one semester in 2002 in the Department of Computer Science at
the University of Paderborn, Germany; and one semester in 2003 in the AI group
at the Autonomous University of Madrid, Spain.

In October 2004, he started as a Ph.D. student in the PNA1 group at the Cen-
trum voor Wiskunde en Informatica (CWI) in Amsterdam within the ADONET
Marie-Curie Research Training Network. From October 2007 he was a Ph.D. stu-
dent in the Computer Science Department at the Eindhoven University of Tech-
nology (TU/e). Since June 2008 he works as a postdoc fellow in the Mathematics
Department at TU/e within the EU project ARRIVAL.

125

126 Curriculum Vitae

	Preliminaries
	Problems, algorithms and computation complexity
	P vs. NP
	IP and LP

	Approximation algorithms
	Randomized algorithms
	Results in this thesis

	Facility location
	On facility location problems
	Problem definition
	Variants and related problems
	Algorithms for UFL
	Our contribution to facility location approximation algorithms.

	The algorithm of Mahdian et al. is not optimal
	The algorithm
	Analysis: lower bound

	A new greedy rounding algorithm
	Outline
	Preliminaries
	Sparsening the graph of the fractional solution
	Our new algorithm
	The 1.5-approximation algorithm
	Multilevel facility location
	Universal randomized clustering procedure
	Concluding remarks

	Phylogenetic trees/networks
	Preliminaries
	Constructing networks consistent with big fraction of triplets
	Definitions
	Labeling a network topology
	An optimized derandomization procedure
	Consequences
	Application to level-1 phylogenetic networks
	A lower bound for level-2 networks
	Conclusions and open questions

	An attempt to break the 1/3 barrier for trees
	A bottom-up 1/3-approximation algorithm for MAX-LEVEL-0
	Reduction from MAX SUBDAG
	MIN CATERPILLAR reduced to FEEDBACK ARC SET
	Maximization reduced to minimization
	Additional remarks

	Comparing two trees
	Introduction
	Complexity
	Approximation
	Fixed-Parameter Tractability
	Experiments

	Nash equilibria
	Introduction
	Notation and Definitions
	A (3 - 52)-approximation
	An Improved Approximation
	Proof of Lemma 4.4.2 and Lemma 4.4.4
	Games with more than 2 players
	Discussion

	Set Multicover
	Preliminaries
	The covering problems
	Bucket Game
	Simple constant factor approximation
	Improvements by parameter adjustments

	Bibliography
	Summary
	Curriculum Vitae

